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REVIEW NOTES ON MATH 250

Eugene R. Speer

This is a brief review of a small portion of Math 250, covering:

• A few basic facts about the nature of the set of solutions of a system of linear equations;

• Computation of the reduced row-echelon form (RREF) of a matrix;

• The solution of a system of linear equations using Gaussian elimination, i.e., using the
RREF of the augmented matrix, and the expression of the solution in vector form;

• Interpreting the RREF of the augmented matrix: Do the equations have a solution?
If so, is the solution unique? If it is not unique, how many free parameters are there?

• Interpreting the RREF of the coefficient matrix: Do the equations have a solution
for every possible right hand side? If so, how many free parameters are there in a
solution?

• The rank and nullity of a matrix.

There are some exercises in Section 5 of these notes through which you can test your
knowledge. For further review, you might consult the Math 250 text [1] or chapter 3 of
the Math 350 text [2].

SOLVING SYSTEMS OF LINEAR EQUATIONS

1. General properties of solutions

Suppose we are given a system of m linear equations in n unknowns x1, . . . , xn:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm

(1)

To write this in a more compact form we introduce the coefficient matrix A, the vector b
giving the terms on the right hand side of the equations, and the vector x of unknowns:

A =









a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn









, b =









b1

b2

...
bm









and x =













x1

x2

x3

...
xn













,

so that (1) becomes Ax = b. (In these notes, the term vector always refers to
a column vector of real numbers.) In the next section we turn to the problem of
determining whether or not the system has any solutions and, if so, of finding them all.
Before that, however, we make some general comments on the nature of solutions.
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The homogeneous problem. Suppose first that the system (1) is homogeneous, that
is, that the right hand side is zero, or equivalently that b1 = b2 = · · · = bm = 0 or b = 0.
Suppose further that we have found, by some method, two solutions x1 and x2 of the
equations. Then for any constants c and d, x = cx1 + dx2 is also a solution, since

Ax = A(cx1 + dx2) = cAx1 + dAx2 = c · 0 + d · 0 = 0.

The key step is at the second equality: we are using the fact that matrix multiplication is
linear, which means exactly that A(cx1 + dx2) = cAx1 + dAx2. The argument extends to
any number of solutions, and we have the

Theorem 1: The principle of superposition. If x1, x2, . . . , xk are all solutions of
Ax = 0, and c1, c2, . . . , ck are constants, then

x = c1x1 + c2x2 + · · ·+ ckxk (2)

is also a solution of Ax = 0.

The name of this principle comes from the fact that (2) is called a linear combination or
linear superposition of the solutions x1, . . . ,xk. We will see later (see Theorem 3 (iii)) that
there is a special value of k such that (i) we can find a set of solutions x1, . . . ,xk with
the property that every solution of Ax = 0 can be built as a linear combination of these
solutions, and (ii) k different solutions are really needed for this to be true.

To verify the principle, that is, to see that (2) is a solution of Ax = 0, we just plug
the putative solution into the equation and again use linearity of matrix multiplication:

Ax = A(c1x1 + c2x2 + · · ·+ ckxk) = c1Ax1 + c2Ax2 + · · ·+ ckAxk = c1 ·0+ · · ·+ ck ·0 = 0.

Notice also that the homogeneous system always has at least one solution,
the zero solution x = 0, since A0 = 0. This is the trivial solution. The system may or
may not also have nonzero solutions, which are called nontrivial.

The inhomogeneous problem. Consider now the case in which the system (1) is inho-
mogeneous, that is, b is arbitrary. Suppose again that we are given two solutions, which
we will now call x and X. Then xh = x − X is a solution of the homogeneous system,
since

Axh = A(x− X) = Ax− AX = b − b = 0.

What this means is that if we know one solution of our equations, X , then every other
solution has the form x = X + xh with Axh = 0; with (2), this means that

x = X + c1x1 + c2x2 + · · ·+ ckxk. (3)

with x1, . . . ,xk solutions of Ax = 0. We have the

Theorem 2: Inhomogeneous linear equations. Every solution x of the system of
inhomogeneous equations (1) is of the form x = X + xh, where X is some particular
solution of the system, and xh is a solution of the corresponding homogeneous system,
that is, Axh = 0 and xh has the form (2).
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One can check directly that X +xh is a solution just by plugging it into the equation
Ax = b:

Ax = A(X + xh) = AX + Axh = b + 0 = b.

2. Row reduction and reduced row-echelon form

The key technique that we will use for solving linear equations, and also for investigat-
ing general properties of the solutions, is the reduction of a matrix to reduced row-echelon
form by the use of elementary row operations, a procedure often called row reduction or
Gaussian elimination. Symbolically, if A is a matrix, we have

elementary
row

A −−−−−−−−−−−−−−−→ R
operations

where R is in reduced row-echelon form. What does this all mean?

Reduced row-echelon form: The matrix R is in reduced row-echelon form (RREF) if
it satisfies four conditions:

(i) All nonzero rows (that is, rows with at least one nonzero entry) are above any zero
rows (rows with all zeros).

(ii) The first nonzero entry in any nonzero row is a 1. This entry is called a pivot.

(iii) Each pivot lies to the right of the pivot in the row above it.

(iv) All matrix entries above a pivot are zero.

Here is a matrix in reduced row-echelon form:

R =















0 1© 3 0 −1 0 0 2
0 0 0 1© −2 0 0 65
0 0 0 0 0 1© 0 28
0 0 0 0 0 0 1© 4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0















The pivots are the circled entries, all with value 1.

Remark: Reduced row-echelon form is a special case of row-echelon form. Row-echelon
form is important for some computational purposes, but in this course we will simplify our
life by working only with the reduced row-echelon form.

One fact with which you may not be familiar is that the RREF of a matrix A is
unique—whatever sequence of row operations is used to go from A to R, with R in RREF,
the resulting R will be the same. The matrix R is called the reduced row-echelon form
of A.

Elementary row operations: There are three elementary row operations on matrices:

R1. Interchange of two rows.

R2. Multiplication of a row by a nonzero scalar.
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Example 1: Row reduction

Here we carry out the reduction of a 3 × 4 matrix to reduced row-echelon form.
We indicate the row operations used by a simple notation: ri denotes the ith row of
the matrix, and the row operations are denoted by ri ↔ rj (interchange rows i and j),
ri → c ri (multiply row i by the scalar c), and ri → ri + c rj (add c times row j to row
i). Notice that in the first step we must switch the first row with another: because the
first column is not identically zero, the first pivot must be in the upper left corner, and
we need a nonzero entry there to get started.





0 −3 −1 1
1 2 3 0
2 2 5 −3





r1 ↔ r2−−−−−−−−−−−−−−→





1© 2 3 0
0 −3 −1 1
2 2 5 −3





r3 → r3 − 2 r1−−−−−−−−−−−−−−→





1© 2 3 0
0 −3 −1 1
0 −2 −1 −3





r2 → −(1/3) r2
−−−−−−−−−−−−−−→





1© 2 3 0
0 1© 1/3 −1/3
0 −2 −1 −3





r1 → r1 − 2 r2

r3 → r3 + 2 r2−−−−−−−−−−−−−−→





1© 0 7/3 2/3
0 1© 1/3 −1/3
0 0 −1/3 −11/3





r3 → −3 r3−−−−−−−−−−−−−−→





1© 0 7/3 2/3
0 1© 1/3 −1/3
0 0 1© 11





r1 → r1 − (7/3) r3

r2 → r2 − (1/3) r3
−−−−−−−−−−−−−−→





1© 0 0 −25
0 1© 0 −4
0 0 1© 11





R3. Addition of a multiple of one row to another row.

By using these operations repeatedly we can bring any matrix into row echelon form.
The procedure is illustrated in Example 1, and there are also worked out examples in the
Math 250 text [1], Section 1.4.

Rank and nullity: The number of nonzero rows in R, the reduced row-echelon form of A,
is called the rank of A, and written rank(A) (it is also the rank of R, since R is already in
RREF). This is of course also the number of pivots of A, or the number of rows containing
pivots, or the number of columns containing pivots. The nullity of A, written nullity(A), is
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the number of columns without pivots; if A has n columns then nullity(A) + rank(A) = n.

Remark: Row operations on a matrix may be implemented by multiplying the matrix on
the left by elementary matrices. These are invertible, and as a consequence we know that
if the matrix B is obtained from A by row operations then B = SA for some invertible
m × m matrix S. In particular, if R is the RREF of A, then R = SA and A = S−1R for
an invertible S.

3. Solving systems of linear equations

Suppose now that we are given the system of linear equations (1) and want to deter-
mine whether or not it has any solutions and, if so, to find them all. The idea is to solve
(1) by doing elementary operations on the equations, corresponding to the elementary row
operations on matrices: interchange two equations, multiply an equation by a nonzero
constant, or add a multiple of one equation to another. What is important is that these
operations do not change the set of solutions of the equations, so that we can reduce the
equations to simpler form, solve the simple equation, and know that we have found the all
solutions of the original equations, but no extraneous ones. Moreover, instead of working
with the equations, we can work with the augmented matrix:

(A |b) =









a11 a12 · · · a1n | b1

a21 a22 · · · a2n | b2

...
...

...
... |

...
am1 am2 · · · amn | bm









.

(It’s not necessary to write the vertical bars here, but they remind us that the last column
plays a special role.) Simplifying the original set of equations is equivalent to reducing the
augmented matrix to RREF. Once this is done, we can easily find the solutions explicitly, if
there are any. Equally important, just by looking at the RREF we can determine whether
solutions exist and, if so, many of their properties. We will write this symbolically as

elementary
row

(A |b) −−−−−−−−−−−−→ (R | e)
operations

The entire new augmented matrix (R | e) is supposed to be in RREF; this means that we
have also reduced A to the RREF matrix R.

Example 2: Suppose we want to solve the equations

−3x2 − x3 = 1

x1 + 2x2 + 3x3 = 0 (4)

2x1 + 2x2 + 5x3 = −3

The augmented matrix is the one we studied in the example in Example 1, so we already
know the reduced row-echelon form for it:

(A |b) =





0 −3 −1 1
1 2 3 0
2 2 5 −3



 −→





1© 0 0 −25
0 1© 0 −4
0 0 1© 11



 = (R | e).
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The RREF corresponds to the equations

x1 = −25

x2 = −4 (5)

x3 = 11

This is the solution; notice that it is unique.

In the next examples we will omit the step of row reduction and start with a matrix
in reduced row-echelon form.

Example 3: Suppose that the RREF form of the augmented matrix is

(R | e) =





1© 2 0 1 | 5
0 0 1© 3 | 2
0 0 0 0 | 1©



 .

The last equation here is 0 = 1 , which clearly has no solutions: it expresses a contradiction.
This is the signal that our original equations have no solutions. Notice that one way to say
what has happened here is that the rank of R, which is 2, is less than the rank of (R | e),
which is three. In general, we will have no solution precisely if rank(R) < rank(R | e).

Example 4: Suppose that the RREF form of the augmented matrix is

(R | e) =





0 1© 2 0 1 | 5
0 0 0 1© 3 | 2
0 0 0 0 0 | 0



 .

Now the idea is to solve for the variables x2 and x4, the variables for the columns containing
pivots, in terms of the other variables, which are treated as parameters. To remind us that
we are treating these variables as parameters, we will give them new names: x1 = c1,
x3 = c2, and x5 = c3. Then our solution is

x1 = c1, x2 = 5 − 2c2 − c3, x3 = c2, x4 = 2 − 3c3, x5 = c3.

In vector form,

x =











c1

5 − 2c2 − c3

c2

2 − 3c3

c3











=











0
5
0
2
0











+ c1











1
0
0
0
0











+ c2











0
−2
1
0
0











+ c3











0
−1
0
−3
1











. (6)

Here we have three parameters, one for each column of R which does not contain a pivot:
the number of free parameters in the solution is nullity(A). There are n = 5 unknowns
and r = rank(R) = 2 pivots, and subtracting these numbers indeed gives n − r = 3 free
parameters.
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The pattern here is quite general. A solution will exist if rank(R) = rank(R | e), and
it will have the general form

x = X + c1x1 + c2xx + · · ·+ ckxk.

The free parameters c1, . . . ck are just the original unknowns corresponding to the columns
without pivots. Since there are r = rank(R) = rank(A) pivots there will be n − r =
nullity(A) free parameters in the solution (that is, k = n − r). Since we can choose the
parameters freely, we can take c1 = c2 = · · · = ck = 0 and we thus find that X itself a
solution. This is the particular solution we discussed in Section 1. If we consider now the
homogeneous problem—the same equations, but with b = 0—then we will also have e = 0,
and by looking at (6) we can see that we will have x = c1x1 + c2xx + · · ·+ ckxk with the
same vectors x1, . . . ,xk; this means that we have recovered (3).

We summarize:

Theorem 3: Solving linear equations. Suppose that the augmented matrix (A |b)
is reduced to the RREF (R | e). Then:

(i) If rank(R) < rank(R | e), so that the last nonzero equation is 0 = 1, then the equations
have no solutions. This cannot happen if the system is homogeneous.

(ii) If rank(R) = rank(R | e) then the equations have at least one solution. Write r =
rank(R) = rank(A); then the solution is unique if n = r, i.e., if every column in R has a
pivot. Otherwise, the equations have a family of solutions with k = n− r = nullity(A) free
parameters. The general solution may be written in the form

x = X + c1x1 + c2xx + · · ·+ ckxk, (7)

where X is a particular solution, c1, . . . , ck are the parameters, and x1, . . . ,xk are solutions
of the homogeneous equations Ax = 0. The specific solutions are found by solving the
reduced equations for the variables corresponding to the columns with pivots in terms of
the other variables, which become the parameters.

(iii) The homogeneous system always has at least one solution: x = 0. This is the trivial
solution. The system has nontrivial solutions if and only if there are columns in R which do
not contain pivots, that is, if and only if r < n. The general solution of the homogeneous
equation is of the form

x = c1x1 + c2xx + · · · + ckxk, (8)

with k = r − n.

If we know the RREF R of the coefficient matrix A then we can draw some conclusions
from Theorem 3 about what may happen for various right hand sides b. If rank(A) = m
then the equations Ax = b will have a solution for every b; if rank(A) < m, so that
the bottom row (at least) of R is identically zero, then there will be some b for which
Ax = b has no solution. Whenever a solution of Ax = b exists it will contain nullity(A)
free parameters; in particular, there will be a unique solution if and only if nullity(A) = 0
or rank(A) = n.
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4. The case of n equations in n unknowns

Probably the most common systems of linear equations have the same number of
equations as unknowns—say n equations in n unknowns. The coefficient matrix A is then
square, with n rows and n columns. In this case there is a connection between the questions
of whether a solution exists, and whether a solution which does exist is unique. As we
shall see, one of two things may happen. Suppose that the augmented matrix has been
reduced to RREF (R | e).

Case 1: rank(A) = n. Since R is an n × n matrix in RREF with no zero rows, it must
be the identity matrix, so that (R | e) = (I | e). The corresponding equations x1 = e1,
x2 = e2, . . . , xn = en will have a solution x = e no matter what e is, and hence no matter
what the original b was; moreover, the solution is clearly always unique.

Case 2: rank(A) < n. In this case, the last row of R is a zero row. This means that for
some choices of b, the right hand side of the original equations, the vector e can have one
more nonzero component than there are nonzero rows in R, i.e., that the equations will
have no solution for some b. On the other hand, if a solution does exist, then because
there is a column without a pivot, our solution method will lead to a solution with at least
one free parameter—that is, any solution that does exist will not be unique. We have the

Theorem 4: n equations in n unknowns:. If A is a square matrix then the system
of equations Ax = b either has a unique solution for every b (Case 1), or fails to have a
solution for some b, and never has a unique solution (Case 2).

Note, for example, that if we know that for some b the system Ax = b has a unique
solution, then we must be in Case 1 and we immediately know that it has a solution, and
in fact a unique solution, for every b. Note also that the homogeneous system Ax = 0 can
have a nontrivial solution only in Case 2, that is, if and only if rank(A) = 0.

There is another way to distinguish between Case 1 and Case 2 which we will use but
not prove: we are in Case 1, that is, rank(A) = n, only if the determinant of A,
det(A), is not zero.

Much more can be said in Case 1. Suppose that we are in this case, i.e., that rank(A) =
n. Let us define the vectors u1, . . . , un to be the columns of the n × n identity matrix:

u1 =













1
0
0
...
0













, u2 =













0
1
0
...
0













, u3 =













0
0
1
...
0













, . . . , un =













0
0
0
...
1













,

We know that the system Ax = ui has a unique solution, which we will call vi, that
is, Avi = ui. Now consider a matrix B with columns v1, . . . ,vn: B = (v1 v2 · · · vn).
Because of the definition of matrix multiplication, if we compute AB we just multiply each
column of B by the matrix A: thus

AB = (Av1 Av2 Av3 · · · Avm) = (u1 u2 u3 · · · un) = I.

Since AB = I, A has an inverse, and it is B. (One has to show that also BA = I, which
is not very hard.)
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These ideas also tell us how to compute A−1. First, how do we find vi? We do
Gaussian elimination on the augmented matrix (A |ui ), and vi, the solution, will just be
the last column of the result, that is, the row reduction will be (A |ui ) → (I |vi ). Doing
all these different problems to find all the vi is a terrible duplication of effort, however, so
we do them all at once:

(A|u1 u2 · · ·un) → (I|v1 v2 · · ·vn) or equivalently (A | I ) → (I |A−1 ).

This method of computing A−1 is discussed in [2], page 161.

We can conclude that if A is a square matrix then any one of the following conditions
is enough to guarantee that we are in Case 1, and hence that in fact all the conditions
hold:

C1: The system Ax = b has a solution for every b.

C2: Whenever the system Ax = b has a solution, the solution is unique.

C3. The homogeneous system Ax = 0 has only the trivial solution x = 0.

C4: rank(A) = n.

C5: nullity(A) = 0.

C6: A has an inverse matrix A−1 satisfying AA−1 = A−1A = I.

C7: The reduced row-echelon form of A is the identity matrix I.

C8: The determinant of A is not zero.

5. Exercises

1. [2] Section 3.2, problems 5(a), (c), and (e).

2. [2] Section 3.4, problems 1 and 2. Do problem 2 specifically by the methods used in
these notes, that is, by introducing the augmented matrix and then reducing it to reduced
row-echelon form. Write the solutions in in the form (7) (as we did in (6)).

3. In (a)-(d) below we suppose that we have been given a system of equations Ax = b and
that we have already reduced the augmented matrix (A |b) to the reduced row-echelon
form (R | e) given. In each case, determine (i) whether the original equations have a
solution; (ii) if they do have a solution, whether or not it is unique; and (iii) if it is not
unique, on how many free parameters there are in the solution. Then write the solution
explicitly in the form (7).

(a) (R | e) =





1 5 −3 2 8 | 2
0 0 1 −1 0 | 3
0 0 0 0 0 | 1





(b) (R | e) =







1 0 0 0 | 2
0 1 0 0 | −1
0 0 1 0 | 3
0 0 0 1 | 4
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(c) (R | e) =







0 1 2 0 −2 0 | 2
0 0 0 1 3 0 | −1
0 0 0 0 0 1 | 3
0 0 0 0 0 0 | 0







4. In each part below, give a m × n matrix R in reduced row-echelon form satisfying the
given condition, or explain briefly why it is impossible to do so.

(a) m = 3, n = 4, and the equation Rx = e has a solution for all e.

(b) m = 3, n = 4, and the equation Rx = 0 has a unique solution.

(c) m = 4, n = 3, and the equation Rx = e has a solution for all e.

(d) m = 4, n = 3, and the equation Rx = 0 has a unique solution.

(e) m = 4, n = 4, and the equation Rx = 0 has no solution.

(f) m = 4, n = 4, and the equation Rx = 0 has a nontrivial solution.

(g) m = 4, n = 4, and for every e the equations Rx = e have a solution containing a free
parameter.

5. Let A be an m× n matrix of rank r. What can you conclude about m, n, and r (other
than r ≤ m and r ≤ n, always true) if the equation Ax = b has

(a) exactly one solution for some b and no solution for some other b?

(b) infinitely many solutions for all b?

(c) exactly one solution for every b?

(d) infinitely many solutions for some b and no solutions for some other b?

6. Suppose that x1 and x2 are solutions of Ax = 0 and that X is a solution of Ax = b.
Without looking at the these notes or the book, show that for any constants c1 and c2,
c1x1 + c2x2 is a solution of Ax = 0 and that X + c1x1 + c2x2 is a solution of Ax = b.

Some brief answers:

1,2. See the “Answers to Selected Exercises” in [2].

3. (a) no solution, (b) unique solution, (c) solution with 3 parameters.

4. (b), (c), (e), and (g) are impossible.

5. (a) r = n < m; (b) r = m < n; (c) r = n = m; (d) r < n and r < m.
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