MATH 350 Linear Algebra
 Quiz 9 Solutions

Instructor: Will Chen

November 29, 2022

1 Solutions

Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear operator given by the matrix

$$
A=\left[\begin{array}{rrr}
8 & -4 & -8 \\
-15 & 16 & 22 \\
12 & -10 & -15
\end{array}\right]
$$

This matrix is similar to

$$
A^{c}:=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

and hence has characteristic polynomial

$$
\chi_{A}=\chi_{A^{c}}=(2-t)^{2}(5-t)
$$

Thus, it has eigenvalues 2 and 5 , with multiplicity 2 and 1 respectively. Let $g_{2}(t), g_{5}(t)$ be polynomials such that

$$
g_{2}(t)(2-t)^{2}+g_{5}(t)(5-t)=1
$$

(Such polynomials exist since $(2-t)^{2},(5-t)$ are relatively prime)
(a) Let $v \in \mathbb{R}^{3}$ be arbitrary. Define $v_{5}:=g_{2}(A)(2-A)^{2} v$ and $v_{2}:=g_{5}(A)(5-A) v$, so that $v=v_{2}+v_{5}$. Show that $v_{2} \in K_{2}, v_{5} \in K_{5}$.

Proof. We showed in class that K_{λ} is the null space of $(A-\lambda I)^{m_{\lambda}}$, where m_{λ} denotes the multiplicity of the eigenvalue λ. This is also Theorem 7.2 in the book. Thus, we want to show that $(A-5 I) v_{5}=(A-2 I) v_{2}=0$.
By definition of v_{5}, we have

$$
\begin{aligned}
(A-5 I) v_{5} & =(A-5 I) g_{2}(A)(2-A)^{2} v & & \text { by definition } \\
& =g_{2}(A)(A-5 I)(2-A)^{2} v & & \text { since polynomials in } A \text { commute with each other } \\
& =-g_{2}(A) \chi_{A}(A) v & & \text { by the definition of the characteristic polynomial } \\
& =-g_{2}(A)\left(\chi_{A}(A)(v)\right) & & \text { In general if } S, T \text { are linear operators then } S T v:=(S T)(v)=S(T(v)) \\
& =0 & & \text { by the Cayley Hamilton theorem }
\end{aligned}
$$

The case of v_{2} is exactly analogous.
(b) Show that if $v_{2}^{\prime} \in K_{2}, v_{5}^{\prime} \in K_{5}$ are other vectors satisfying $v=v_{2}^{\prime}+v_{5}^{\prime}$, then $v_{2}^{\prime}=v_{2}$ and $v_{5}^{\prime}=v_{5}$.

Proof. We know $v_{2}+v_{5}=v=v_{2}^{\prime}+v_{5}^{\prime}$. Thus, we have

$$
v_{2}^{\prime}-v_{2}=v_{5}-v_{5}^{\prime}
$$

The left hand side lies in K_{2}, and the right hand side lies in K_{5}, so both the left hand side and the right hand side lie in $K_{2} \cap K_{5}$. Since $K_{2} \cap K_{5}=0$ (we showed this in class; this is Theorem 7.1 in the book), this implies that both the left and right hand sides are 0 , so $v_{2}^{\prime}=v_{2}$ and $v_{5}^{\prime}=v_{5}$.

Essentially the same problem was given on Homework 2 (§1.3, Problem 30).

