MATH 350 Linear Algebra
 Quiz 8 Solutions

Instructor: Will Chen

November 8, 2022

1 Solutions

Let $T: V \rightarrow V$ be linear, $\operatorname{dim} V<\infty$, and $v \in V$ nonzero. Let k be the minimum positive integer such that $T^{k}(v)$ is a linear combination of the vectors in

$$
\beta:=\left\{v, T v, \ldots, T^{k-1} v\right\}
$$

In other words, $T^{k} v=a_{0} v+a_{1} T v+a_{2} T^{v}+\cdots+a_{k-1} T^{k-1} v$ and for any positive integer k^{\prime} less than $k, T^{k^{\prime}} v$ is not a linear combination of $v, T v, \ldots, T^{k^{\prime}-1} v$.

Recall that $\langle v\rangle_{T}$ was defined to be $\operatorname{Span}\left\{v, T v, T^{2} v, \ldots\right\}$.
(a) Show that β spans $\langle v\rangle_{T}$.

We want to show that $\operatorname{Span}\left\{v, T v, \ldots, T^{k-1} v\right\}=\operatorname{Span}\left\{v, T v, T^{2} v, \ldots\right\}$. Clearly the left side is contained in the right side (since the left side is the span of a subset). It remains to show that for every $n \geq 0$, $T^{n} v \in \operatorname{Span}\left\{v, T v, \ldots, T^{k-1} v\right\}$.
Idea. Here is an illustration of the idea, in the special case $k=3$, so that $T^{3} v=v+T v+T^{2} v$. We want to show that for all $n \geq 0, T^{n} v \in \operatorname{Span}\left\{v, T v, T^{2} v\right\}$. The cases $n=0,1,2$ are obvious. For $n=3$, $T^{3} v=v+T v+T^{2} v$ so $T^{3} v$ lies in $\operatorname{Span}\left\{v, T v, T^{2} v\right\}$. For $n=4, T^{4} v=T\left(T^{3} v\right)=T\left(v+T v+T^{2} v\right)=$ $T v+T^{2} v+T^{3} v=T v+T^{2} v+\left(v+T v+T^{2} v\right)$, so $T^{4} v$ also lies in $\operatorname{Span}\left\{v, T v, T^{2} v\right\}$. In general, if $x \in \operatorname{Span}\left\{v, T v, T^{2} v\right\}$, writing $x=a_{0} v+a_{1} T v+a_{2} T^{2} v$, then $T x=a_{0} T v+a_{1} T^{2} v+a_{2} T^{3} v$ which also lies in $\operatorname{Span}\left\{v, T v, T^{2} v\right\}$ since $T v, T^{2} v, T^{3} v$ all lie in $\operatorname{Span}\left\{v, T v, T^{2} v\right\}$. We can turn this into a rigorous proof using induction:

Proof. We will use induction on n. By assumption, $v, T v, T^{2} v, \ldots T^{k} v$ all lie in $\operatorname{Span}\left\{v, T v, \ldots, T^{k-1} v\right\}$. This will form our base case. Now if $T^{n} v \in \operatorname{Span}\left\{v, T v, \ldots, T^{k-1} v\right\}$, then we can write $T^{n} v=b_{0} v+b_{1} T v+$ $\cdots+b_{k-1} T^{k-1} v$, so

$$
T^{n+1} v=T\left(T^{n} v\right)=T\left(b_{0} v+b_{1} T v+\cdots+b_{k-1} T^{k-1} v\right)=b_{0} T v+b_{1} T^{2} v+\cdots+b_{k-1} T^{k} v
$$

Since $T v, T^{2} v, \ldots, T^{k} v$ all lie in $\operatorname{Span}\left\{v, T v, \ldots, T^{k-1} v\right\}$, it follows that $T^{n+1} v$ does as well.
(b) Assuming that $\operatorname{dim} V=5$, express the matrix $\left[T_{\langle v\rangle_{T}}\right]_{\beta}$ in terms of $a_{0}, a_{1}, \ldots, a_{k-1}$. You may use the fact that β is a basis of $\langle v\rangle_{T}$.
Solution. Since β is a basis and $\operatorname{dim} V=5$, we are in the situation $k=5$. Thus $\beta=\left\{v, T v, T^{2} v, T^{3} v, T^{4} v\right\}$, and $T^{5} v=a_{0} v+a_{1} T v+a_{2} T^{2} v+a_{3} T^{3} v+a_{4} T^{4} v$. The i th basis vector β_{i} is $T^{i-1} v$, and the i th column of $\left[T_{\langle v\rangle_{T}}\right]_{\beta}$ is $\left[T\left(\beta_{i}\right)\right]_{\beta}$. Thus

- the first column is $\left[T\left(\beta_{1}\right)\right]_{\beta}=[T v]_{\beta}=e_{2}$,
- the second column is $\left[T\left(\beta_{2}\right)\right]_{\beta}=[T T v]_{\beta}=\left[T^{2} v\right]_{\beta}=e_{3}$,
- the third column is $\left[T\left(\beta_{3}\right)\right]_{\beta}=\left[T T^{2} v\right]_{\beta}=\left[T^{3} v\right]_{\beta}=e_{4}$, and
- the fourth column is $\left[T\left(\beta_{4}\right)\right]_{\beta}=\left[T T^{3} v\right]_{\beta}=\left[T^{4} v\right]_{\beta}=e_{5}$.
- The fifth column is $\left[T\left(\beta_{5}\right)\right]_{\beta}=\left[T T^{4} v\right]_{\beta}=\left[T^{5} v\right]_{\beta}=\left[a_{0} v+a_{1} T v+a_{2} T^{2} v+a_{3} T^{3} v+a_{4} T^{4} v\right]_{\beta}=$ $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$.
Thus, the matrix is

$$
\left[T_{\langle v\rangle_{T}}\right]_{\beta}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & a_{0} \\
1 & 0 & 0 & 0 & a_{1} \\
0 & 1 & 0 & 0 & a_{2} \\
0 & 0 & 1 & 0 & a_{3} \\
0 & 0 & 0 & 1 & a_{4}
\end{array}\right]
$$

