MATH 350 Linear Algebra Quiz 8 Solutions

Instructor: Will Chen

November 8, 2022

1 Solutions

Let $T: V \to V$ be linear, dim $V < \infty$, and $v \in V$ nonzero. Let k be the minimum positive integer such that $T^k(v)$ is a linear combination of the vectors in

$$\beta := \{v, Tv, \dots, T^{k-1}v\}$$

In other words, $T^k v = a_0 v + a_1 T v + a_2 T^v + \dots + a_{k-1} T^{k-1} v$ and for any positive integer k' less than k, $T^{k'} v$ is not a linear combination of $v, Tv, \dots, T^{k'-1}v$.

Recall that $\langle v \rangle_T$ was defined to be $\text{Span}\{v, Tv, T^2v, \ldots\}$.

(a) Show that β spans $\langle v \rangle_T$.

We want to show that $\text{Span}\{v, Tv, \dots, T^{k-1}v\} = \text{Span}\{v, Tv, T^2v, \dots\}$. Clearly the left side is contained in the right side (since the left side is the span of a subset). It remains to show that for every $n \ge 0$, $T^n v \in \text{Span}\{v, Tv, \dots, T^{k-1}v\}$.

Idea. Here is an illustration of the idea, in the special case k = 3, so that $T^3v = v + Tv + T^2v$. We want to show that for all $n \ge 0$, $T^n v \in \text{Span}\{v, Tv, T^2v\}$. The cases n = 0, 1, 2 are obvious. For n = 3, $T^3v = v + Tv + T^2v$ so T^3v lies in $\text{Span}\{v, Tv, T^2v\}$. For n = 4, $T^4v = T(T^3v) = T(v + Tv + T^2v) = Tv + T^2v + T^3v = Tv + T^2v + (v + Tv + T^2v)$, so T^4v also lies in $\text{Span}\{v, Tv, T^2v\}$. In general, if $x \in \text{Span}\{v, Tv, T^2v\}$, writing $x = a_0v + a_1Tv + a_2T^2v$, then $Tx = a_0Tv + a_1T^2v + a_2T^3v$ which also lies in $\text{Span}\{v, Tv, T^2v\}$ since Tv, T^2v, T^3v all lie in $\text{Span}\{v, Tv, T^2v\}$. We can turn this into a rigorous proof using induction:

Proof. We will use induction on n. By assumption, $v, Tv, T^2v, \ldots T^kv$ all lie in $\text{Span}\{v, Tv, \ldots, T^{k-1}v\}$. This will form our base case. Now if $T^nv \in \text{Span}\{v, Tv, \ldots, T^{k-1}v\}$, then we can write $T^nv = b_0v + b_1Tv + \cdots + b_{k-1}T^{k-1}v$, so

$$T^{n+1}v = T(T^n v) = T(b_0 v + b_1 T v + \dots + b_{k-1} T^{k-1} v) = b_0 T v + b_1 T^2 v + \dots + b_{k-1} T^k v$$

Since Tv, T^2v, \ldots, T^kv all lie in Span $\{v, Tv, \ldots, T^{k-1}v\}$, it follows that $T^{n+1}v$ does as well.

(b) Assuming that dim V = 5, express the matrix $[T_{\langle v \rangle_T}]_{\beta}$ in terms of $a_0, a_1, \ldots, a_{k-1}$. You may use the fact that β is a basis of $\langle v \rangle_T$.

Solution. Since β is a basis and dim V = 5, we are in the situation k = 5. Thus $\beta = \{v, Tv, T^2v, T^3v, T^4v\}$, and $T^5v = a_0v + a_1Tv + a_2T^2v + a_3T^3v + a_4T^4v$. The *i*th basis vector β_i is $T^{i-1}v$, and the *i*th column of $[T_{\langle v \rangle_T}]_{\beta}$ is $[T(\beta_i)]_{\beta}$. Thus

- the first column is $[T(\beta_1)]_{\beta} = [Tv]_{\beta} = e_2$,
- the second column is $[T(\beta_2)]_{\beta} = [TTv]_{\beta} = [T^2v]_{\beta} = e_3,$
- the third column is $[T(\beta_3)]_{\beta} = [TT^2v]_{\beta} = [T^3v]_{\beta} = e_4$, and

- the fourth column is [T(β₄)]_β = [TT³v]_β = [T⁴v]_β = e₅.
 The fifth column is [T(β₅)]_β = [TT⁴v]_β = [T⁵v]_β = [a₀v + a₁Tv + a₂T²v + a₃T³v + a₄T⁴v]_β = (a₀, a₁, a₂, a₃, a₄).

Thus, the matrix is

$$[T_{\langle v \rangle_T}]_{\beta} = \begin{bmatrix} 0 & 0 & 0 & 0 & a_0 \\ 1 & 0 & 0 & 0 & a_1 \\ 0 & 1 & 0 & 0 & a_2 \\ 0 & 0 & 1 & 0 & a_3 \\ 0 & 0 & 0 & 1 & a_4 \end{bmatrix}$$