MATH 350 Linear Algebra
 Quiz 6 Solutions

Instructor: Will Chen

October 28, 2022

1 Solutions

(a) Let V be an n-dimensional vector space, and let $I: V \rightarrow V$ be the identity linear transformation. Let β, γ be two bases for V, and let I_{n} denote the $n \times n$ identity matrix. Show that $[I]_{\beta}^{\gamma}=I_{n}$ if and only if $\beta=\gamma$.
Proof. By definition, the i th column of $[I]_{\beta}^{\gamma}$ is the coordinate vector $\left[I\left(\beta_{i}\right)\right]_{\gamma}=\left[\beta_{i}\right]_{\gamma}$. Recall that the i th column of the identity matrix I_{n} is just the column vector e_{i} (this has a 1 in the i th position and zeroes elsewhere). Thus we find that

$$
\left(i \text { th column of }[I]_{\beta}^{\gamma}\right)=\left(i \text { th column of } I_{n}\right) \quad \text { if and only if } \quad\left[\beta_{i}\right]_{\gamma}=e_{i}
$$

Recall the definition of the coordinate vector: for any $v \in V,[v]_{\gamma}$ is the column vector whose entries a_{1}, \ldots, a_{n} satisfy

$$
v=a_{1} \gamma_{1}+a_{2} \gamma_{2}+\cdots+a_{n} \gamma_{n}
$$

Thus, $\left[\beta_{i}\right]_{\gamma}$ is the column vector whose entries a_{1}, \ldots, a_{n} satisfy

$$
\beta_{i}=a_{1} \gamma_{1}+a_{2} \gamma_{2}+\cdots+a_{n} \gamma_{n}
$$

It follows that $\left[\beta_{i}\right]_{\gamma}=e_{i}$ if and only if

$$
\beta_{i}=0 \gamma_{1}+\cdots+0 \gamma_{i-1}+1 \gamma_{i}+0 \gamma_{i+1}+\cdots+0 \gamma_{n}=\gamma_{i}
$$

Since $[I]_{\beta}^{\gamma}=I_{n}$ if and only if each column of $[I]_{\beta}^{\gamma}$ is equal to the corresponding column of I_{n}, we find that $[I]_{\beta}^{\gamma}=I_{n}$ if and only if $\beta_{i}=\gamma_{i}$ for each i.
(b) Let $I: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the identity linear transformation. Show that every $n \times n$ invertible matrix can be written as $[I]_{\beta}^{\gamma}$ for suitable bases β, γ of \mathbb{R}^{n}. Hint: It suffices to take $\gamma=\operatorname{std}$.
Proof. Let A be an arbitrary $n \times n$ invertible matrix. We'd like to show that we can find a basis β for \mathbb{R}^{n} such that $A=[I]_{\beta}^{\text {std }}$. Since A is invertible, A has rank n, so its columns span \mathbb{R}^{n}. Since it has n columns and \mathbb{R}^{n} is n-dimensional, this is equivalent to the columns being a basis for \mathbb{R}^{n}. Thus we may simply let β denote the set of columns of A, so that β_{i} is the i th column of A. We claim that with this choice of $\beta,[I]_{\beta}^{\text {std }}=A$. Indeed, the i th column of $[I]_{\beta}^{\text {std }}$ is the coordinate vector $\left[I\left(\beta_{i}\right)\right]_{\text {std }}=\left[\beta_{i}\right]_{\text {std }}$, but β_{i} is a vector in \mathbb{R}^{n}, so $\left[\beta_{i}\right]_{\text {std }}=\beta_{i}$. Thus the i th column of $[I]_{\beta}^{\text {std }}$ is equal to β_{i}, which is the i th column of A by construction.

