MATH 350 Linear Algebra Quiz 6 Solutions

Instructor: Will Chen

October 28, 2022

1 Solutions

(a) Let V be an n-dimensional vector space, and let $I: V \to V$ be the identity linear transformation. Let β, γ be two bases for V, and let I_n denote the $n \times n$ identity matrix. Show that $[I]_{\beta}^{\gamma} = I_n$ if and only if $\beta = \gamma$.

Proof. By definition, the *i*th column of $[I]^{\gamma}_{\beta}$ is the coordinate vector $[I(\beta_i)]_{\gamma} = [\beta_i]_{\gamma}$. Recall that the *i*th column of the identity matrix I_n is just the column vector e_i (this has a 1 in the *i*th position and zeroes elsewhere). Thus we find that

(*i*th column of $[I]^{\gamma}_{\beta}$) = (*i*th column of I_n) if and only if $[\beta_i]_{\gamma} = e_i$

Recall the definition of the coordinate vector: for any $v \in V$, $[v]_{\gamma}$ is the column vector whose entries a_1, \ldots, a_n satisfy

$$v = a_1 \gamma_1 + a_2 \gamma_2 + \dots + a_n \gamma_n$$

Thus, $[\beta_i]_{\gamma}$ is the column vector whose entries a_1, \ldots, a_n satisfy

$$\beta_i = a_1 \gamma_1 + a_2 \gamma_2 + \dots + a_n \gamma_n$$

It follows that $[\beta_i]_{\gamma} = e_i$ if and only if

$$\beta_i = 0\gamma_1 + \dots + 0\gamma_{i-1} + 1\gamma_i + 0\gamma_{i+1} + \dots + 0\gamma_n = \gamma_i$$

Since $[I]^{\gamma}_{\beta} = I_n$ if and only if each column of $[I]^{\gamma}_{\beta}$ is equal to the corresponding column of I_n , we find that $[I]^{\gamma}_{\beta} = I_n$ if and only if $\beta_i = \gamma_i$ for each *i*.

(b) Let $I : \mathbb{R}^n \to \mathbb{R}^n$ be the identity linear transformation. Show that every $n \times n$ invertible matrix can be written as $[I]^{\gamma}_{\beta}$ for suitable bases β, γ of \mathbb{R}^n . Hint: It suffices to take $\gamma = \text{std.}$

Proof. Let A be an arbitrary $n \times n$ invertible matrix. We'd like to show that we can find a basis β for \mathbb{R}^n such that $A = [I]_{\beta}^{\text{std}}$. Since A is invertible, A has rank n, so its columns span \mathbb{R}^n . Since it has n columns and \mathbb{R}^n is n-dimensional, this is equivalent to the columns being a basis for \mathbb{R}^n . Thus we may simply let β denote the set of columns of A, so that β_i is the *i*th column of A. We claim that with this choice of β , $[I]_{\beta}^{\text{std}} = A$. Indeed, the *i*th column of $[I]_{\beta}^{\text{std}}$ is the coordinate vector $[I(\beta_i)]_{\text{std}} = [\beta_i]_{\text{std}}$, but β_i is a vector in \mathbb{R}^n , so $[\beta_i]_{\text{std}} = \beta_i$. Thus the *i*th column of $[I]_{\beta}^{\text{std}}$ is equal to β_i , which is the *i*th column of A by construction.