MATH 350 Linear Algebra
 Quiz 5 Solutions

Instructor: Will Chen

October 18, 2022

1 Solutions

(a) Consider the basis $\beta=((2,1),(3,4))$ of \mathbb{R}^{2}. Write β_{1}, β_{2} for the first and second basis elements respectively. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map given by

$$
\begin{aligned}
& T\left(\beta_{1}\right)=2 \beta_{1} \\
& T\left(\beta_{2}\right)=-\beta_{2}
\end{aligned}
$$

Find $[T]_{\beta}$.
Solution. Recall that $[T]_{\beta}$ denotes the matrix for T relative to the basis β for both the domain and codomain. By definition of this matrix, its i th column is the coordinate vector of $T\left(\beta_{i}\right)$ with respect to β. Thus

$$
[T]_{\beta}=\left[\begin{array}{rr}
2 & 0 \\
0 & -1
\end{array}\right]
$$

(b) Find $[T]=[T]_{\text {std }}$.

Recall that $[T]=[T]_{\text {std }}$ is the matrix of T with respect to the standard basis of \mathbb{R}^{2} (for both the domain and codomain), namely $\left\{e_{1}, e_{2}\right\}=\{(1,0),(0,1)\}$. By definition, the i th column of T is just $T\left(e_{i}\right)$. We can calculate this in two ways.
Solution 1. We wish to write e_{1}, e_{2} as a linear combination of β_{1}, β_{2}. Note that this is possible since $[T]_{\beta}$ is invertible, so T is invertible (hence onto). For e_{1}, this amounts to solving the equation

$$
a\left[\begin{array}{l}
2 \\
1
\end{array}\right]+b\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

or equivalently, the linear system

$$
\begin{array}{r}
2 a+3 b=1 \\
a+4 b=0
\end{array}
$$

We can solve this using the techniques of Math 250. The second equation forces $a=-4 b$, so the first equation becomes $-8 b+3 b=1$, so $-5 b=1$, so $b=-1 / 5$ and $a=4 / 5$. It follows that
$T\left(e_{1}\right)=T\left(a \beta_{1}+b \beta_{2}\right)=T\left(\frac{4}{5} \beta_{1}-\frac{1}{5} \beta_{2}\right)=\frac{4}{5} T\left(\beta_{1}\right)-\frac{1}{5} T\left(\beta_{2}\right)=\frac{4}{5}\left(2 \beta_{1}\right)-\frac{1}{5}\left(-\beta_{2}\right)=\frac{4}{5}\left[\begin{array}{l}4 \\ 2\end{array}\right]-\frac{1}{5}\left[\begin{array}{l}-3 \\ -4\end{array}\right]=\left[\begin{array}{l}19 / 5 \\ 12 / 5\end{array}\right]$
For e_{2}, a similar calculation shows that $e_{2}=\frac{-3}{5} \beta_{1}+\frac{2}{5} \beta_{2}$. Thus,

$$
T\left(e_{2}\right)=T\left(\frac{-3}{5} \beta_{1}+\frac{2}{5} \beta_{2}\right)=\frac{-3}{5} T\left(\beta_{1}\right)+\frac{2}{5} T\left(\beta_{2}\right)=\frac{-3}{5}\left[\begin{array}{l}
4 \\
2
\end{array}\right]+\frac{2}{5}\left[\begin{array}{l}
-3 \\
-4
\end{array}\right]=\left[\begin{array}{l}
-18 / 5 \\
-14 / 5
\end{array}\right]
$$

Thus

$$
[T]=\left[T\left(e_{1}\right) \quad T\left(e_{2}\right)\right]=\frac{1}{5}\left[\begin{array}{ll}
19 & -18 \\
12 & -14
\end{array}\right]
$$

Solution 2. A second solution involves considering a change of basis transformation. Consider the map $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by sending $e_{i} \mapsto \beta_{i}$ (for $i=1,2$). Then we can compute the effect of $U^{-1} T U$ as follows:

$$
\begin{array}{rccccccc}
U^{-1} T U: & \mathbb{R}^{2} & \xrightarrow{U} & \mathbb{R}^{2} & \xrightarrow{T} & \mathbb{R}^{2} & \xrightarrow{U^{-1}} & \mathbb{R}^{2} \\
& e_{1} & \mapsto & \beta_{1} & \mapsto & 2 \beta_{1} & \mapsto & 2 e_{1} \\
& e_{2} & \mapsto & \beta_{2} & \mapsto & -\beta_{2} & \mapsto & -e_{2}
\end{array}
$$

It's easy to see that the matrix of $U^{-1} T U$ with respect to the standard basis is

$$
\left[U^{-1} T U\right]=\left[\begin{array}{rr}
2 & 0 \\
0 & -1
\end{array}\right]
$$

It is also easy to see that $[U]=\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right]$. On the other hand, we also have

$$
\left[\begin{array}{rr}
2 & 0 \\
0 & -1
\end{array}\right]=\left[U^{-1} T U\right]=\left[U^{-1}\right][T][U]=[U]^{-1}[T][U]
$$

So left-multiplying by U and right-multiplying by U^{-1}, we get

$$
[T]=[U]\left[\begin{array}{rr}
2 & 0 \\
0 & -1
\end{array}\right][U]^{-1}=\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right]\left[\begin{array}{rr}
2 & 0 \\
0 & -1
\end{array}\right] \frac{1}{5}\left[\begin{array}{rr}
4 & -3 \\
-1 & 2
\end{array}\right]
$$

Performing the matrix multiplication yields

$$
[T]=\left[\begin{array}{ll}
4 & -3 \\
2 & -4
\end{array}\right] \frac{1}{5}\left[\begin{array}{rr}
4 & -3 \\
-1 & 2
\end{array}\right]=\frac{1}{5}\left[\begin{array}{ll}
19 & -18 \\
12 & -14
\end{array}\right]
$$

