MATH 350 Linear Algebra Quiz 3 Solutions

Instructor: Will Chen

September 29, 2022

1. Define "linear transformation".

Solution. A linear transformation between vector spaces V, W over F is a function $f: V \rightarrow W$ which satisfies $f\left(v_{1}+v_{2}\right)=f\left(v_{1}\right)+f\left(v_{2}\right)$ for all $v_{1}, v_{2} \in V$, and $f(a v)=a f(v)$ for all $v \in V, a \in F$.
2. Prove that if $T: V \rightarrow W$ is linear, then for any $v \in V, T^{-1}(T(v))=v+\operatorname{Ker} T$.

Recall that for any $w \in W, T^{-1}(w):=\{v \in V \mid T(v)=w\}$, and that $v+\operatorname{Ker} T:=\left\{v+v^{\prime} \mid v^{\prime} \in \operatorname{Ker} T\right\} \subset V$.
Proof. To show equality of two sets $A=B$, we must show that $A \subset B$ and $B \subset A$.
We first show that $v+\operatorname{Ker} T \subset T^{-1}(T(v))$. Suppose $v_{1} \in v+\operatorname{Ker}_{T}$. Then $v_{1}=v+k$ for some $k \in \operatorname{Ker} T$, so $T\left(v_{1}\right)=T(v+k)=T(v)+T(k)=T(v)+0=T(v)$. This shows that $v_{1} \in T^{-1}(T(v))$.
Next we show that $T^{-1}(T(v)) \in v+\operatorname{Ker} T$. Suppose $v_{1} \in T^{-1}(T(v))$. This means that $T\left(v_{1}\right)=T(v)$, so $T\left(v_{1}-v\right)=T\left(v_{1}\right)-T(v)=0$. This shows $v_{1}-v \in \operatorname{Ker} T$. On the other hand, we can always write $v_{1}=v+\left(v_{1}-v\right) \in v+\operatorname{Ker} T$.

