MATH 350 Linear Algebra
 Quiz 2 Solutions

Instructor: Will Chen

September 20, 2022

1. Let V be a vector space over a field $F, S \subset V$ a subspace. Define $\operatorname{Span} S$ without using the words "linear combination".

Solution. Span S is the subset of V consisting of vectors v which can be written as

$$
v=a_{1} s_{1}+\cdots+a_{n} s_{n}
$$

for some $a_{1}, \ldots, a_{n} \in F$ and $s_{1}, \ldots, s_{n} \in S$.
2. Let V be a vector space, and $S \subset V$ a spanning set. Let $B \subset S$ be a maximal linearly independent set ${ }^{1}$ Prove that B must be a basis.

Proof. We will prove that B is a basis by contradiction. Suppose B is not a basis. Since B is linearly independent, the only way it isn't a basis is if it does not span V. This means that $\operatorname{Span} B$ cannot contain S (if Span B contains S, then it must contain Span $S=V$). Thus there exists $s \in S$, with $s \notin$ Span B. This means that $B \cup\{s\}$ is linearly independent, contradicting the maximality of B.

Remark. The proof doesn't have to proceed by contradiction. The basic idea of the proof is the following: If B is a linearly independent set which does not span V, then we can find a vector $s \in S-B$ such that $B \cup\{s\}$ is linearly independent. In other words, any linearly independent subset of S which doesn't span V can be enlarged to a larger linearly independent subset. It follows that a maximal such subset must span V, and hence be a basis. Exercise: Write out a version of the proof without using proof by contradiction.

[^0]
[^0]: ${ }^{1}$ This means that B is linearly independent, and if B^{\prime} is another subset which contains B and is not equal to B, then B^{\prime} is not linearly independent.

