MATH 350 Linear Algebra Quiz 1 Solutions

Instructor: Will Chen

September 13, 2022

1. Let V be a vector space over a field F. Let $S \subset V$ be a nonempty subset. Prove that Span(S) is a vector space.

Proof. To show that Span(S) is a subspace, it suffices to check that for any $v, w \in \text{Span}(S)$ and $a \in F$, that $v + w \in \text{Span}(S)$ and $av \in \text{Span}(S)$.

First let $v, w \in \text{Span}(S)$. By definition of Span(S), there exist vectors $v_1, \ldots, v_n, w_1, \ldots, w_n \in S$, and scalars $a_1, \ldots, a_n, b_1, \ldots, b_n \in F$ such that

$$v = a_1v_1 + a_2v_2 + \dots + a_nv_n$$
 and $w = b_1w_1 + b_2w_2 + \dots + b_nw_n$

Since the v_i 's and w_i 's are in S, this shows that $v + w = a_1v_1 + \cdots + a_nv_n + b_1w_1 + \cdots + b_nw_n$ is a linear combination of vectors in S, so again by definition of Span(S), this shows that $v + w \in \text{Span}(S)$.

Similarly, $av = a(a_1v_1 + \dots + a_nv_n) = a(a_1v_1) + \dots + a(a_nv_n) = (aa_1)v_1 + \dots + (aa_n)v_n$. Since $a, a_i \in F$, so is aa_i . Again since each v_i is in S, this shows that av is also a linear combination of vectors in S, so $av \in \text{Span}(S)$.

Remark 1. Here are some remarks/common mistakes.

- (a) The fact that $v + w \in \text{Span}(S)$ for any $v, w \in S$ is obvious (it's part of the definition of span). The key is to show that $v + w \in \text{Span}(S)$ for any $v, w \in \text{Span}(S)$ (and similarly with av).
- (b) The set S is not necessarily finite! Thus you can't simply write $S = \{v_1, \ldots, v_n\}$. The set S may not even be countable! (for example if $S = V = \mathbb{R}^n$), so you can't even write S as $\{v_i\}_{i \in \mathbb{N}}$.
- (c) In general the relationship between S, Span(S), and V is: $S \subset \text{Span}(S) \subset V$.
- 2. With notations as above, show that if $W \subset V$ is a subspace containing S, then W contains Span(S).

This problem was not graded. Nonetheless, here is a solution. Please study this solution and use it as a reference for future proofs of this type.

Proof. Let $v \in \text{Span}(S)$. Our goal is to show that $v \in W$. By definition of Span(S), we may write

$$v = a_1 v_1 + \dots + a_n v_n$$

for some $a_1, \ldots, a_n \in F$ and $v_1, \ldots, v_n \in S$. Our goal is to show that $v \in W$. First, since each $v_i \in S \subset W$, we have $v_i \in W$, so $a_i v_i \in W$ by the definition of subspace. It follows that v is a sum of vectors in W. Clearly if n = 2, then the definition of subspace would imply that $v = a_1v_1 + a_2v_2 \in W$. If n = 3, then you can say $v = (a_1v_1 + a_2v_2) + a_3v_3$. We already know that $a_3v_3 \in W$ and that $a_1v_1 + a_2v_2 \in W$, so their sum is also in W. It should be intuitively clear that this statement should hold for arbitrary n. To make it precise, you can use induction:

Let P(n) be the statement that any linear combination of $\leq n$ vectors in S lies in W. The statement P(1) is just the statement that $a_1v_1 \in W$, which follows from the definition of subspace. This proves the base case.

For the inductive step, we must show that $P(n) \Rightarrow P(n+1)$ for any $n \ge 1$. Suppose P(n) holds. To show P(n+1), we must show that

$$x := a_1 v_1 + \dots + a_n v_n + a_{n+1} v_{n+1} \in W$$

where each $a_i \in F, v_i \in S$. We may write this as

$$x = (a_1v_1 + \dots + a_nv_n) + a_{n+1}v_{n+1}$$

Since P(n) is assumed true, $a_1v_1 + \cdots + a_nv_n \in W$ and $a_{n+1}v_{n+1} \in W$. Thus x is a sum of two vectors in W, so $x \in W$ by the definition of subspace.

Thus we have proven P(n) for all n, which implies $v \in W$, as desired.

Remark 2. The idea of induction is that you prove two statements. First you prove P(1) (the base case). Second, you prove $P(n) \Rightarrow P(n+1)$ for all $n \ge 1$ (the inductive step). Together, they imply the chain of implications $P(1) \Rightarrow P(2) \Rightarrow P(3) \Rightarrow \cdots$. Essentially, in proving these two statements, you have defined an algorithm which produces proofs of P(n) for any n.¹ Induction is a fundamental concept in mathematics, and an indispensible tool when writing proofs, or more generally in understanding why things are true. You should study this proof until it is second nature.

¹Whether this constitutes a proof of $\forall n, P(n)$ is an interesting philosophical question. In this class we will assume that it does.