# MATH 350 Linear Algebra Quiz 1 Solutions 

Instructor: Will Chen

September 13, 2022

1. Let $V$ be a vector space over a field $F$. Let $S \subset V$ be a nonempty subset. Prove that $\operatorname{Span}(S)$ is a vector space.

Proof. To show that $\operatorname{Span}(S)$ is a subspace, it suffices to check that for any $v, w \in \operatorname{Span}(S)$ and $a \in F$, that $v+w \in \operatorname{Span}(S)$ and $a v \in \operatorname{Span}(S)$.
First let $v, w \in \operatorname{Span}(S)$. By definition of $\operatorname{Span}(S)$, there exist vectors $v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{n} \in S$, and scalars $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in F$ such that

$$
v=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n} \quad \text { and } \quad w=b_{1} w_{1}+b_{2} w_{2}+\cdots+b_{n} w_{n}
$$

Since the $v_{i}$ 's and $w_{i}$ 's are in $S$, this shows that $v+w=a_{1} v_{1}+\cdots+a_{n} v_{n}+b_{1} w_{1}+\cdots+b_{n} w_{n}$ is a linear combination of vectors in $S$, so again by definition of $\operatorname{Span}(S)$, this shows that $v+w \in \operatorname{Span}(S)$.
Similarly, $a v=a\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=a\left(a_{1} v_{1}\right)+\cdots+a\left(a_{n} v_{n}\right)=\left(a a_{1}\right) v_{1}+\cdots+\left(a a_{n}\right) v_{n}$. Since $a, a_{i} \in F$, so is $a a_{i}$. Again since each $v_{i}$ is in $S$, this shows that $a v$ is also a linear combination of vectors in $S$, so $a v \in \operatorname{Span}(S)$.

Remark 1. Here are some remarks/common mistakes.
(a) The fact that $v+w \in \operatorname{Span}(S)$ for any $v, w \in S$ is obvious (it's part of the definition of span). The key is to show that $v+w \in \operatorname{Span}(S)$ for any $v, w \in \operatorname{Span}(S)$ (and similarly with $a v$ ).
(b) The set $S$ is not necessarily finite! Thus you can't simply write $S=\left\{v_{1}, \ldots, v_{n}\right\}$. The set $S$ may not even be countable! (for example if $S=V=\mathbb{R}^{n}$ ), so you can't even write $S$ as $\left\{v_{i}\right\}_{i \in \mathbb{N}}$.
(c) In general the relationship between $S, \operatorname{Span}(S)$, and $V$ is: $S \subset \operatorname{Span}(S) \subset V$.
2. With notations as above, show that if $W \subset V$ is a subspace containing $S$, then $W$ contains $\operatorname{Span}(S)$.

This problem was not graded. Nonetheless, here is a solution. Please study this solution and use it as a reference for future proofs of this type.

Proof. Let $v \in \operatorname{Span}(S)$. Our goal is to show that $v \in W$. By definition of $\operatorname{Span}(S)$, we may write

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

for some $a_{1}, \ldots, a_{n} \in F$ and $v_{1}, \ldots, v_{n} \in S$. Our goal is to show that $v \in W$. First, since each $v_{i} \in S \subset W$, we have $v_{i} \in W$, so $a_{i} v_{i} \in W$ by the definition of subspace. It follows that $v$ is a sum of vectors in $W$. Clearly if $n=2$, then the definition of subspace would imply that $v=a_{1} v_{1}+a_{2} v_{2} \in W$. If $n=3$, then you can say $v=\left(a_{1} v_{1}+a_{2} v_{2}\right)+a_{3} v_{3}$. We already know that $a_{3} v_{3} \in W$ and that $a_{1} v_{1}+a_{2} v_{2} \in W$, so their sum is also in $W$. It should be intuitively clear that this statement should hold for arbitrary $n$. To make it precise, you can use induction:

Let $P(n)$ be the statement that any linear combination of $\leq n$ vectors in $S$ lies in $W$. The statement $P(1)$ is just the statement that $a_{1} v_{1} \in W$, which follows from the definition of subspace. This proves the base case.
For the inductive step, we must show that $P(n) \Rightarrow P(n+1)$ for any $n \geq 1$. Suppose $P(n)$ holds. To show $P(n+1)$, we must show that

$$
x:=a_{1} v_{1}+\cdots+a_{n} v_{n}+a_{n+1} v_{n+1} \in W
$$

where each $a_{i} \in F, v_{i} \in S$. We may write this as

$$
x=\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)+a_{n+1} v_{n+1}
$$

Since $P(n)$ is assumed true, $a_{1} v_{1}+\cdots+a_{n} v_{n} \in W$ and $a_{n+1} v_{n+1} \in W$. Thus $x$ is a sum of two vectors in $W$, so $x \in W$ by the definition of subspace.
Thus we have proven $P(n)$ for all $n$, which implies $v \in W$, as desired.
Remark 2. The idea of induction is that you prove two statements. First you prove $P(1)$ (the base case). Second, you prove $P(n) \Rightarrow P(n+1)$ for all $n \geq 1$ (the inductive step). Together, they imply the chain of implications $P(1) \Rightarrow P(2) \Rightarrow P(3) \Rightarrow \cdots$. Essentially, in proving these two statements, you have defined an algorithm which produces proofs of $P(n)$ for any $n 1^{1}$ Induction is a fundamental concept in mathematics, and an indispensible tool when writing proofs, or more generally in understanding why things are true. You should study this proof until it is second nature.

[^0]
[^0]:    ${ }^{1}$ Whether this constitutes a proof of $\forall n, P(n)$ is an interesting philosophical question. In this class we will assume that it does.

