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Abstract

In this paper we study 2-generated profinite metabelian groups from the perspective of arithmetic geometry
and group theory. Motivated by the results and conjectures of Chen [Che18], we show that ifM(1)K denotes
the moduli stack of elliptic curves over a number field K, then for any elliptic curve E/K with origin O and
x ∈ E−O, the monodromy image of the arithmetic fundamental group π1(M(1)K , EQ) on the maximal pro-
metabelian quotient of πét

1 (EQ−O, x)maps isomorphically onto its monodromy image on πét
1 (EQ)

∼=
∏

` T`(E).
In particular, for any finite 2-generated metabelian group G, the moduli space M(G) of elliptic curves with
G-covers only ramified above the origin is a disjoint union of congruence modular curves. Our methods are
mostly group theoretic – we study the outer automorphism group of the rank 2 free pro-metabelian groupM ,
and introduce the use of Koszul homology in the study of 2-generated profinite metabelian groups G. This
homology group controls the extent to which generating pairs of G are determined up to conjugation by their
abelianizations together with their commutators, and yields bounds for the congruence level of components
of M(G).
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1 Introduction

1.1 Motivation and geometric results
In this paper we study 2-generated1 finite metabelian groups G from the perspective of group theory and
arithmetic geometry. Group theoretically, we are interested in understanding Nielsen equivalence classes of
generating pairs of G, or equivalently the action of Out(Π) on Epiext(Π, G) := Epi(Π, G)/ Inn(G), where Π
denotes a free group of rank 2. Geometrically, we wish to understand the moduli stackM(G) (over Q) of elliptic
curves with G-structures2 (or “Teichmüller structures of level G”) in the sense of [Che18, DM69, PdJ95]. The
connection between the two perspectives is provided by the Galois correspondence: M(G) is finite étale over
the moduli stack of elliptic curves M(1) (over Q), and fixing an elliptic curve E/Q, the monodromy action
of πét1 (M(1)Q, EQ) on a geometric fiber of the map M(G) → M(1) can be identified with the action of the
profinite completion of Out+(Π) on Epiext(Π, G), where Out+(Π) ≤ Out(Π) is the index 2 subgroup acting with
determinant 1 on the abelianization Πab ∼= Z2. Here, if O ∈ E denotes the origin and E◦ := E − O, then Π is
to be viewed as the topological fundamental group of the punctured torus E◦(C).

By a classical theorem of Nielsen, a choice of basis for Π defines an isomorphism Out+(Π) ∼= SL2(Z). In [Che18],
the first author used this to show that the quotient of the upper half plane H by any finite index, possibly
noncongruence subgroup of SL2(Z) (hereafter called a modular curve) is a moduli space for elliptic curves
equipped with “G-structures”, for an appropriate finite group G. When G is abelian, the action of Out+(Π) ∼=
SL2(Z) on Epiext(Π, G) = Epi(Z2, G) is induced by the canonical action of SL2(Z) on Z2; in this case, G-structures
are equivalent to classical congruence structures associated to the congruence subgroups Γ(n),Γ1(n), . . .etc, and
accordingly the resulting moduli stacksM(G)C are disjoint unions of the classical congruence (stacky) modular
curves [H/Γ(n)], [H/Γ1(n)], . . .etc. From this perspective, it is natural to ask:

For which finite groups G are the components ofM(G) congruence modular curves?

This question can be taken either geometrically, where one asks when the components ofM(G)C are isomorphic
to congruence modular curves, or arithmetically, where we require the isomorphism to respect the Q-structure.
Taken geometrically, it is equivalent to asking: when do the stabilizers of Out+(Π) � Epiext(Π, G) correspond to

1By this we mean that the group can be generated by two elements.
2If k is an algebraically closed field of characteristic not dividing |G|, then a G-structure on an elliptic curve E/k is the same as

a G-Galois cover C → E, only branched over the origin, together with an isomorphism Gal(C/E)
∼−→ G.
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congruence subgroups of SL2(Z) via the isomorphism Out+(Π) ∼= SL2(Z)? In the arithmetic form, this question
can also be understood as asking: for an elliptic curve E/Q with origin O, E◦ := E −O, and x ∈ E◦(Q),

How much does the action of Gal(Q/Q) on the cohomology of E tell us about its action on the
fundamental group Π̂ := πét1 (E◦Q, x)? (1)

We note that by the Grothendieck conjecture for affine hyperbolic curves [Tam97], the Galois action on πét1 (E◦, x)
is enough to determine E◦ up to isomorphism, whereas the Galois action on cohomology is in general only enough
to determine it up to isogeny.

The general philosophy, which is to a degree supported by computational data [Che18, Appendix B], is that the
property ofM(G) having congruence components should be related to G being in some sense “close to abelian”.
For example, in [Che18, Theorem 4.2.2], the first author shows that for dihedral groups,M(D2n)Q is a disjoint
union of congruence modular curves. In general, the problem seems to be remarkably subtle – for example, in a
future work, we will show that there exist infinitely many nonabelian finite simple groups G such thatM(G)Q
has a congruence component, which disproves a conjecture of the first author [Che18, Conjecture 4.4.1]. In this
paper we will prove the “positive” result that for metabelian G, the components ofM(G) are congruence in the
strong arithmetic sense. For example, we will show

Theorem A (See 6.4). Let G be a 2-generated finite metabelian group of exponent e. Let e′ be the exponent
of the derived subgroup G′ = [G,G]. Then the connected components of M(G)Q are all isomorphic, and every
component is a quotient ofM((Z/ee′)2)Q by a subgroup of GL2(Z/ee′).

Here, we note that M((Z/n)2)Q is connected but not geometrically connected - upon base changing to C it is
a disjoint union of φ(n) copies of the congruence modular stack [H/Γ(n)], where φ denotes the Euler totient
function. Thus in the situation of the theorem we say thatM(G)Q has arithmetic congruence level dividing ee′.
Over C, we are able to get a somewhat better bound for the congruence level:

Theorem B (See 6.10). Let Gab := G/G′ denote the abelianization, and let n := gcd(e, |Gab|). Then every
component of M(G)C is isomorphic to the stack quotient of the upper half plane by a congruence subgroup of
SL2(Z) of level dividing n.

The fact that the components of M(G)C are all congruence also allows us to recover a result of Ben-Ezra and
Lubotzky [BEL17], that the automorphism group of a discrete rank 2 free metabelian group does not have the
congruence subgroup property.

The proofs of the theorems above involve an analysis of the monodromy action of Γ on the set Epiext(Π̂, G).
This action is defined using the outer representation ρE◦/Q : Γ −→ Out(Π̂) associated to the universal family of
elliptic curves overM(1)Q. Since Γ ∼= ΓoGal(Q/Q), we must understand the topological monodromy action of
Γ and the arithmetic monodromy action of Gal(Q/Q) on Epiext(Π̂, G). Because G is metabelian, any surjection
Π̂→ G factors through the maximal pro-metabelian quotient, denoted M := Π̂meta, so it suffices to understand
the outer actions of Γ and Gal(Q/Q) on the rank 2 free metabelian group M and the set Epiext(M,G). Let
A := Π̂ab = Mab denote the abelianization of Π̂, and let IOut(M) := Ker(Out(M) → Aut(M)). We have an
exact sequence

1 −→ IOut(M) −→ Out(M)
ab∗−→ Aut(A)︸ ︷︷ ︸

∼=GL2(Ẑ)

−→ 1 (2)

Theorem C (See 3.22, 6.1). The monodromy image of Γ ∼= ΓoGal(Q/Q) inside Out(M) maps isomorphically
(via ab∗) onto Aut(A) ∼= GL2(Ẑ). In particular, the sequence (2) is split.

To prove this, we first note that the monodromy image of Γ inside Out(M) surjects onto Aut(A) and satisfies
a certain compatibility relation between its actions on M ′ and A – if x1, x2 generate M , then its action on
M ′ is determined by its action on the commutator [x1, x2], on which it acts by exponentiating to the power
of the cyclotomic character3 χ : Γ → Gal(Q/Q) → Ẑ×, and on A its determinant is also given by χ. Outer

3This is because [x1, x2] generates an inertia subgroup of M ∼= πét
1 (E◦

Q
, x)meta.
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automorphisms satisfying such a compatibility relation will be called “inertia-preserving”. Second, we show that
the subgroup of inertia-preserving outer automorphisms map isomorphically onto Aut(A) (3.22). From this it
follows that the monodromy image of Γ coincides with the subgroup of inertia-preserving outer automorphisms,
as desired. Theorem C generalizes a result of Davis [Dav13].

Since A = Π̂ab is canonically isomorphic to the fundamental group of the unpunctured elliptic curve E, and hence
is the product of the `-adic Tate modules T`(E) (over all primes `), one consequence of the theorem is that the
monodromy image of Gal(Q/Q) acting on

∏
` T`(E) is isomorphic to its image acting on M = πét1 (E◦Q, x)meta. In

other words, the action of Gal(Q/Q) on the cohomology of E in some sense tells you everything about its action
on the pro-metabelian fundamental group of E◦Q. The splitting also implies that the components ofM(G)Q are
all congruence, though it gives no control on the congruence level.

1.2 Rigidity, Koszul homology, and congruence level bounds
Let G be a profinite 2-generated metabelian group with derived subgroup G′ and abelianization ab : G→ Gab :=
G/G′. Note that G′ admits a canonical structure as a module under the completed group algebra Ẑ[[Gab]], where
the Gab-action is given by the exact sequence 1→ G′ → G→ Gab → 1. Because G is 2-generated, this module
is moreover cyclic. Recall that M is a free profinite metabelian group of rank 2, and A = Mab.

A central technical question that we address in the paper is:

Suppose (g1, g2), (g′1, g
′
2) are two generating pairs for G whose images in Gab agree and such that the

commutator [g1, g2] is conjugate to [g′1, g
′
2]. Must (g1, g2), (g′1, g

′
2) be (simultaneously) conjugate?

(3)

A group G for which the question has a positive answer will be called rigid. The usefulness of this notion lies
in the fact that if x1, x2 ∈ M are generators, then for rigid G, the action of Γ on Epiext(Π, G) = Epiext(M,G)
is determined by its action on [x1, x2] (where it acts via χ) and on A (which lies in the realm of the classical
theory of Galois representations associated to elliptic curves [Ser89]). Thus for rigid G, arithmetic and geometric
properties of M(G) are easily deduced from properties of M(Gab). To be precise, let Gens(G′) denote the set
of Ẑ[[Gab]]-module generators of G′. Fix generators x1, x2 of Π, and consider the map

ξ × κ : Epiext(Π, G) = Epiext(M,G) −→ Epi(M,Gab)×Gens(G′)

sending ϕ 7→ (ab ◦ ϕ,ϕ([x1, x2]).4 Then, for example, we have

Theorem D (See 6.8). If G is rigid, then the map ξ × κ is a bijection. Geometrically, if G is finite then there
is an integer m such that the components of M(G)Q(ζm) are geometrically connected, and the restriction of the
canonical map M(G)Q(ζm) →M(Gab)Q(ζm) to any connected component is an isomorphism. Here we can take
m to be the least common multiple of the exponent of G′ and the order of the exterior square Gab ∧Gab.

In general, we will show that the obstructions to rigidity lie in the group IOut1(G) of outer automorphisms of
G which act trivially on both G′ and Gab (up to conjugation). More precisely, the group IOut1(G) acts freely
and transitively on the fibers of ξ × κ, and is a quotient of the homology group H1(A,G′) where the A-module
structure on G′ is given by any surjection A→ Gab (see §4.3, §4.4). We will call G strictly rigid ifH1(A,G′) = 0.5
The regularity of the action of IOut1(G) on the fibers of ξ × κc comes from the very useful property that IA-
endomorphisms of M preserve all closed normal subgroups, and hence descend to every quotient6 (3.6). This is
also responsible for the fact that the components ofM(G) are all isomorphic.

An important calculation is that M ′ is a free Ẑ[[A]]-module of rank 1 (3.10), and that H1(A,M ′) = 0 (4.17),
so M is strictly rigid. Since H1(A, ·) does preserve epimorphisms in general, this does not imply rigidity for
all 2-generated profinite metabelian groups G. However, it does imply that all components of M(G)C are

4We will define ξ, κ individually in §4.2.
5There is also an interpretation of Hi(A,G

′): H0(A,G′) is the module of coinvariants G′
Gab , H2(A,G′) ∼= G′ ∩ Z(G), and

Hi(A,G
′) = 0 for i /∈ {0, 1, 2} (Theorem 4.17).

6This comes from the observation that M ′ is a cyclic Ẑ[[A]]-module and hence any Ẑ[[A]]-linear endomorphism of M ′ descends to
every quotient. In particular, the fact that G is 2-generated is crucial.
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congruence, and is a key ingredient to the proof of the semidirect product decomposition of Out(M) (Theorem
C). The calculation amounts to showing that if a1, a2 are generators of A, then the elements a1− 1, a2− 1 in the
completed group algebra Ẑ[[A]] form a regular sequence in the sense of commutative algebra. This implies that
the Koszul complex7

0 −→M ′
d2−→M ′ ×M ′ d1−→M ′ −→ Ẑ −→ 0

associated to a1 − 1, a2 − 1 ∈ Ẑ[[A]] is a free Ẑ[[A]]-module resolution of Ẑ, so Hi(A,M
′) = 0 for all i. Viewing

G′ as a Ẑ[[A]]-module quotient of M ′, this allows us to calculate Hi(A,G
′) as the homology of the complex

G′
d2→ G′ × G′ d1→ G′, or equivalently as the group Tor

Ẑ[[A]]
i (Ẑ, G′). An immediate consequence of this theory

is that H1(A,G′) is a subquotient of (G′Gab)2, and G′Gab is a quotient of the procyclic group Gab ∧̂Gab, where
∧̂ denotes the completed exterior product. In particular, IOut1(G) is controlled by all of these groups, which
immediately yields a simple “Schur-Zassenhaus”-style criterion for rigidity:

Theorem E (See 4.27). Let G be a finite 2-generated metabelian group. If the orders of Gab ∧ Gab and G′Gab

are coprime, then G is strictly rigid. In particular, if Gab is cyclic or G′Gab = 0, then G is strictly rigid.8

In §4.7 we will compute H1(A,G′), IOut1(G) for various families of 2-generated finite metabelian groups.

Our main use of this homological theory is to obtain bounds on the congruence level of components ofM(G). The
arithmetic congruence level bound in Theorem A involves constructing a family of groups Mn,m (for n,m ≥ 1)
such that every 2-generated finite metabelian group is a quotient of some Mn,m, and such that there is a map
Mnm,m →Mn,m which induces the zero map on first homology. While Mn,m is generally not rigid (see Example
4.30), inducing the 0 map on homology implies a weaker version of rigidity: if (g1, g2), (g′1, g

′
2) are generating

pairs which can be lifted to generating pairs of Mnm,m which have the same images in Mab
nm,m and conjugate

commutators in M ′nm,m, then they are conjugate in Mn,m. This weaker version of rigidity is the essence of the
arithmetic congruence level bound in Theorem A. We view this method as boundingM(G) from above.

We will also boundM(G) from below - that is, we bound the degree of the canonical (surjective) mapM(G)→
M(Gab) induced by abelianization G → Gab. In §6.2.2, we show that this map is Galois with Galois group
isomorphic to a subgroup of IOut1(G); in particular, it is abelian. Because congruence modular curves have rela-
tively few congruence abelian covers, this puts additional restrictions on the congruence level of the components
ofM(G)C. These considerations lead to the congruence level bound in Theorem B.

1.3 Future directions and related work
For nonrigid G, our methods say little about the problem of classifying the components ofM(G)Q (or equivalently
the orbits of Out+(Π) on Epiext(Π, G)). If Σg,n denotes the fundamental group of an n-punctured surface of
genus g with fundamental group Πg,n (so Π = Π1,1 and Out+(Π) is isomorphic to the mapping class group
MCG(Σ1,1)), then this question can be viewed as classifying the connected components of Hurwitz spaces of
G-covers of genus g curves, only ramified above n points. If one fixes G and allows g (resp. n) to be large,
then there are a number of results which describe the connected components (equivalently MCG(Σg,n)-orbits on
Epiext(Πg,n, G), going by the name of genus stabilization (see [DT06, §6] or [CLP16]) (resp. branch stabilization
see [FV91, Appendix], [Lön20], [EVW16, Theorem 6.1], [LWZB19, Corollary 12.5]). The case where (g, n) are
fixed and small (e.g. (g, n) = (1, 1)) seems to be more mysterious. In [Che18], the first author made some
progress towards this problem in the case G = SL2(Fp), and applied the result to a conjecture of Bourgain,
Gamburd, and Sarnak concerning the Diophantine geometry of the Markoff surface; however, the methods there
are better suited to highly nonabelian groups, and seem to give little information for metabelian G.

Here we briefly describe a potential picture for the classification problem. Fix generators x1, x2 ∈ Π. For
ϕ ∈ Epiext(Π, G), write ϕab for the composition ab ◦ ϕ : Π → Gab. The action of Out+(Π) ∼= SL2(Z) preserves
the element ϕab(x1) ∧ ϕab(x2) in the cyclic group Gab ∧ Gab. As noted in §1.2 above, the action of Out+(Π)
also preserves the conjugacy class of ϕ([x1, x2]) ∈ G. In general, these two invariants together are not enough
to classify the Out+(Π)-orbits on Epiext(Π, G) – example, D8 has two components even though there is only

7Here d2(r) = ((a1 − 1)r, (a2 − 1)r), and d1(r1, r2) = (1− a2)r1 + (a1 − 1)r2.
8This also holds for profinite G, if one uses the completed exterior square and the appropriate notion of “coprime orders”

[RZ10, §2.3].
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one choice for both invariants. However the two invariants can be simultaneously refined into a single invariant,
namely the equivalence class of ϕ(x1)∧ϕ(x2) in the nonabelian exterior square G∧G [McD98], the equivalence
relation being the one induced by conjugation in G. If G̃ → G denotes a Schur cover, then this can also
be identified with the class of [ ˜ϕ(x1), ˜ϕ(x2)], where ˜ϕ(xi) denotes any lift of ϕ(xi) to G̃ (the commutator is
independent of the choice of lift since G̃ → G is a central extension). One can check that this refined invariant
separates the orbits on Epiext(Π, D8), and by computer search one can check that it also separates the orbits for
all finite 2-generated metabelian groups of order ≤ 150. It is natural to ask:

Question 1.1. For a finite 2-generated metabelian group, are the Out+(Π)-orbits on Epiext(Π, G) classified by
the class of ϕ(x1) ∧ ϕ(x2) ∈ G ∧G?

1.4 Overview of the paper
Sections §3-§4 are entirely group-theoretic. Algebraic geometry does not enter until §5-6.

In §3 we prove some basic results on 2-generated metabelian groups. We define the canonical representation,
determinant, and IA-endomorphisms. The first key result is that IA-endomorphisms are normal (Corollary 3.6), a
result which will be used repeatedly in the rest of the paper. Next, we study the rank 2 free profinite metabelian
group M ; we show that its derived subgroup M ′ is a free Ẑ[[A]]-module of rank 1 (3.10), that its IA outer
automorphisms are totally characterized by the determinant (3.17), and the semidirect product decomposition
of Out(M) (3.22).

In §4 we initiate a group-theoretic study of Epi(M,G), its quotient by Inn′(G) (the subgroup of Inn(G) defined
by conjugation by elements of G′), and finally Epiext(M,G) := Epi(M,G)/ Inn(G). In each case we study the
fibers of the map to Epi(M,Gab) × Gens(G′). It is a consequence of the normality of IA-endomorphisms of M
that the map ξ × κ : Epi(M,G)/ Inn′(G) → Epi(M,Gab) × Gens(G′) is a torsor under the group IOut′1(G) :=
IAut1(G)/ Inn′(G), where IAut1(G) is the subgroup of IA-automorphisms of G which act trivially on G′. In §4.4
we identify IOut′1(G) with the group homology H1(A,G′), where A acts on G′ via any surjection A→ Gab. In
§4.7, we define the notion of rigidity, prove Theorem E, and calculate H1(A,G′) ∼= IOut′1(G) and IOut1(G) for
various families of metabelian groups.

In §5 we review the theory of the moduli stacksM(G), and how Galois theory connects the structure ofM(G)
with that of Epiext(M,G). In §5.5 we give a summary of the notation that will be used in the following section
to translate our group-theoretic results into statements regardingM(G). In §6, we bring everything together to
prove Theorems A, B, C, D.

2 Conventions on profinite groups
When discussing profinite groups, rings, or monoids, all homomorphisms and cocycles will be by default assumed
continuous and subgroups are assumed closed. In particular, for profinite objects, finite generation means
topological finite generation, and commutator subgroup means the closure of the discrete commutator subgroup.

Usually profinite groups (including finite groups) will be denoted using Roman letters G,M,A, . . ., whereas
infinite discrete groups will generally be denoted by bold letters G,M,A, . . ..

3 Preliminaries on 2-generated metabelian groups

3.1 Canonical representations, determinants, and IA-endomorphisms
Let G be a metabelian group, with abelianization Gab and derived subgroup G′. In this section, we describe the
situation when G is a (discrete) group. Similar results hold for profinite G, mutatis mutandis: homomorphisms
and cocycles are continuous, subgroups are closed (as in §2), and group algebras should be replaced by completed
group algebras – if G is a profinite group, limit of Gα, then its complete group algebra Ẑ[[G]] is the limit of
(Z/n)[Gα]. See [RZ10, §5.3].
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We have an exact sequence
1 −→ G′ −→ G −→ Gab −→ 1 (4)

Since the inner action of G on G′ restricts to the trivial action of G′ on itself, the action factors through Gab,
and turns G′ into a module over the group algebra Z[Gab].

Definition 3.1. The canonical representation of G is the action ρG : Gab → Aut(G′) induced by the inner
action of G. The canonical module of G is the Gab-module G′.

Now suppose G is 2-generated, with generators x1, x2. Let a1, a2 be their images in Gab and c := [x1, x2] =
x1x2x

−1
1 x−1

2 . If c vanishes, then G is abelian. The normal subgroup generated by c is generated as a subgroup
by the Gab-orbit of c; it is also the Z[Gab]-module generated by c. The quotient is abelian, and hence we have

Proposition 3.2. Let G be a metabelian group generated by x1, x2 with commutator c. Then the commutator
subgroup G′ is generated as a Z[Gab]-module by c.

Let RG be the quotient of Z[Gab] by the annihilator ideal of c.

Notation. For r ∈ Z[Gab] and z ∈ G′, if we use multiplicative notation for G′, then we will write zr (or expz(r))
for the image of z under the action of r. Sometimes we will use additive notation for G′, in which case we will
write r · z (or just rz). The former multiplicative notation will be the default – we will always explicitly note
when we switch to additive notation. Despite the notation, we will always view G′ as a left Z[Gab]-module.
Thus, if g ∈ G has image g ∈ Gab, beware that:

zg = gzg−1 (or g · z = gzg−1 in additive notation).

For c as above, the map Z[Gab] → G′ sending r 7→ cr factors through an isomorphism expc : RG
∼−→ G′. The

inverse will be denoted logc : G′ ∼= RG. The abelianization exact sequence (4) becomes

1 −→ (RG,+)
expc−→ G −→ Gab −→ 1

An IA-endomorphism ofG is an endomorphism which induces the identity onGab. Let IAEnd(G) (resp. IAut(G))
denote the monoid (resp. group) of IA-endomorphisms (resp. IA-automorphisms) of G. If G is a 2-generated
metabelian group and γ ∈ IAEnd(G), then γ acts Gab-linearly on RG ∼= G′. Because RG ∼= G′ is a cyclic
Z[Gab]-module, it follows that γ acts by multiplication by an element of RG.

Definition 3.3. For γ ∈ IAEnd(G), the determinant of γ is the unique element det(γ) ∈ RG such that γ acts
on G′ by multiplication by det(γ). In a formula, we have

γ(z) = zdet(γ) for all z ∈ G′

If c ∈ G′ is a RG-basis, and α ∈ End(G) any endomorphism, define

detc(α) := logc(α(c))

Note that detc |IAEnd(G) coincides with det. However detc is not multiplicative on End(G):

Proposition 3.4. The map detc : End(G) → RG is a crossed monoid homomorphism, continuous if G is
profinite. That is,

detc(γ ◦ γ′) = detc(γ) γdetc(γ
′) for all γ, γ′ ∈ End(G) (5)

Proof. If G is discrete, this follows from the identity

γ(γ′(c)) = γ(cdetc(γ
′)) = cdetc(γ) γdetc(γ

′). (6)

If G is profinite, then by our conventions RG is a quotient of Ẑ[[Gab]]. Let RG be the image of the discrete group
algebra Z[Gab] in RG. Then RG is a dense subalgebra of RG. The relation (5) follows from (6) if detc(γ

′) lies
in RG. The general case follows by writing detc(γ

′) as a limit of elements of RG.
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The group of 1-cocycles Z1(G,G′) consists of the functions δ : G→ G′ satisfying

δ(gh) = δ(g)δ(h)g for all g ∈ G

where as per our notation, δ(h)g = gδ(h)g−1. If G is profinite, we should only consider the continuous cocycles.
To an IA-endomorphism γ ∈ IAEnd(G) we associate the 1-cocycle δγ : G→ G′ given by δγ(g) = γ(g)g−1. One
easily checks that the map γ 7→ δγ defines a bijection

IAEnd(G) ∼=Sets Z
1(G,G′)

Since the RG-action on G′ commutes with the action of G, Z1(G,G′) inherits the structure of an RG-module.

Proposition 3.5. Let G be a metabelian group generated by x1, x2. Write c := [x1, x2].

(a) The RG-module of IA-endomorphisms, viewed as cocycles, is free of rank 2, with a basis consisting of the
inner automorphisms inn(x1), inn(x2).

(b) For any z1, z2 ∈ G′, there is a (unique) IA-endomorphism γz1,z2 of G mapping xi to zixi for i = 1, 2.
Writing zi = cri for ri ∈ RG, γz1,z2 is given by the formula

γz1,z2(g) = [x1, g]r2 [x2, g]−r1g (7)

(c) For γz1,z2 as in (b), writing zi = cri , we have

det(γz1,z2) = 1 + r2(a1 − 1)− r1(a2 − 1) (8)

Proof. For i = 1, 2, let δi denote the cocycle associated to inn(xi), so δi(g) = [xi, g] in G′. Let c ∈ G′ be an
RG-basis. Using the isomorphism expc : RG

∼−→ G′, it suffices to instead work with Z1(G,RG). Then in RG,
δ1(x2) = 1, δ2(x1) = −1, and δi(xi) = 0 for i = 1, 2. It follows that the map

evx1,x2
: Z1(G,G′) ∼= Z1(G,RG) −→ R2

G

δ 7→ (δ(x1), δ(x2))

sends δ1 to (0, 1) and δ2 to (−1, 0), so it is an RG-linear isomorphism. This proves (a). Writing zi = cri , the
linear combination r2δ1 − r1δ2 ∈ Z1(G,RG) sends xi 7→ ri (for i = 1, 2). The corresponding IA-endomorphism
then takes the form (7) and sends xi 7→ zixi as desired. Since an endomorphism is determined by its values on
generators, this endomorphism is unique. This proves (b).

For (8), note that for g ∈ G, [g, c] = cg−1 where g denotes the image of g in Gab. Thus

γz1,z2(c) = [x1, c]
r2 [x2, c]

−r1c

= c(a1−1)r2c−(a2−1)r1c

= c1+(a1−1)r2−(a2−1)r1

This proves (c).

Corollary 3.6. Let f : G→ H be a surjection of 2-generated metabelian groups. Then every IA-endomorphism
of G descends to H, and moreover every IA-endomorphism of H is induced by an IA-endomorphism of G.

Proof. For z1, z2 ∈ G′, the IA-endomorphism γz1,z2 descends to γf(z1),f(z2). Since f induces a surjection G′ → H ′,
every IA-endomorphism of H lifts to an IA-endomorphism of G.

Remark 3.7. This property fundamentally uses the fact that G is 2-generated and the corollary that G′ is a
cyclic Z[Gab]-module. Indeed, for an IA-endomorphism to descend to every quotient it must descend to every
Z[Gab]-quotient of G′.

8



3.2 The groups Mn,m

For integers n,m ≥ 1, let Mn,m denote the group with presentation

Mn,m = 〈x1, x2 | xn1 = xn2 = [x1, x2]m = 1〉

We call x1, x2 the standard generators of Mn,m. It is a 2-generated metabelian group with abelianization
An,m := Mab

n,m
∼= (Z/n)2. We write a1, a2 for the images of x1, x2 in An,m. The commutator subgroup M ′n,m is

a (Z/m)[An,m] = (Z/m)[a1, a2]/〈an1 − 1, an2 − 1〉-module generated by c := [x1, x2]. We will write

Rn,m := RMn,m
∼=expc M

′
n,m

for the quotient of (Z/m)[An,m] by Ann(Z/m)[An,m](M
′
n,m). In particular, Mn,m is finite. Since xn2 = 1, we also

have [x1, x
n
2 ] = 1. Applying (??) inductively, we see that c is killed by

∑n−1
i=0 a

i
2. Since [xn1 , x2] = [x2, x

n
1 ]−1, it

is also killed by
∑n−1
i=0 a

i
1.

Proposition 3.8. The annihilator of M ′n,m is the ideal In,m := 〈
∑n−1
i=0 a

i
1,
∑n−1
i=0 a

i
2〉. In other words,

Rn,m = (Z/m)[a1, a2]/In,m.

Proof. Let [a1], [a2] denote the images of a1, a2 in (Z/m)[An,m]/In,m. We claim that Mn,m is the semidirect
product S := ((Z/m)[An,m]/In,m o 〈x2〉) o 〈x1〉, where x2 acts on (Z/m)[An,m]/In,m by multiplication by [a2],
and x1 acts on (Z/n)[An,m]/In,mo 〈x2〉 by sending (0, x2) 7→ (1, x2) and (r, 1) 7→ ([a2]r, 1). Here, x1, x2 ∈Mn,m

corresponds to (0, 1, x1), (0, x2, 1) ∈ S. Thus, x1 acts by sending

(r, xk2) = (r, 1)(0, x2)k 7→ ([a1]r, 1)(1, x2)k = ([a1]r, 1)

(
k−1∑
i=0

[a2]i, xk2

)
=

(
[a1]r +

k−1∑
i=0

[a2]i, xk2

)

The relations
∑n−1
i=0 a

i
1 =

∑n−1
i=0 a

i
2 = 0 imply that x1, x2 each act with order n, and their images in the semidirect

product S have order n. In S, the commutator [x1, x2] becomes:

[x1, x2] = [(0, 1, x1), (0, x2, 1)] = (0, 1, x1)(0, x2, 1)(0, 1, x−1
1 )(0, x−1

2 , 1) = (1, 1, 1)

which is identified with the order m element 1 ∈ (Z/n)[An,m]/Im,n ⊂ S. This shows that S′ = Rn,m, or
equivalently that the (Z/m)[An,m]-module annihilator of S′ is In,m. Since x1, x2 satisfy the same relations in S
as in Mn,m, S is a quotient of Mn,m. Thus S′ is a (Z/m)[An,m]-module quotient of M ′n,m, so we have

In,m ⊂ Ann(M ′n,m) ⊂ Ann(S′) = In,m

so In,m = Ann(M ′n,m) as desired. This also shows that Mn,m
∼= S as claimed.

3.3 The free profinite metabelian group M

If G is a profinite group, the (projective) limit of finite groups Gα, the completed group algebra Ẑ[[G]] is defined
to be the limit limα,n(Z/n)[Gα]. It is also the product of the rings Zp[[G]] := limk,α(Z/pr)[Gα].

Abelianization and (closed) derived subgroups respect the limit structure: G′ = limαG
′
α and Gab = limαG

ab
α .

Passing to the limit, we find that G′ is a Ẑ[[Gab]]-module, and that if G is generated by x1, x2, then G′ is generated
as a Ẑ[[Gab]]-module by the commutator [x1, x2]. As in §3.1, we will denote by RG the quotient of Ẑ[[Gab]] by
the annihilator of c. Similarly, expc : r 7→ cr defines an isomorphism RG

∼−→ G′, valid for any Ẑ[[Gab]]-module
generator c of G′.

Definition 3.9. We will writeM for the free profinite metabelian group of rank 2. This is a profinite metabelian
group which is free of rank 2 in the category of profinite metabelian groups. Moreover we will write A for the
abelianization of M .

9



Proposition 3.10. Let x1, x2 be generators of M , with images a1, a2 ∈ A. Then (a1, a2) : Ẑ2 → A is an
isomorphism, and M ′ is a free Ẑ[[A]]-module of rank 1 generated by c := [x1, x2]. In particular, the determinant
detc on End(M) takes values in Ẑ[[A]].

Proof. The profinite group M is the limit of the Mn,m’s of §3.2 (for n,m ≥ 1), where x1, x2 ∈ M maps
to the standard generators of Mn,m. Each Mn,m has abelianization An,m ∼= (Z/n)2 and derived subgroup
M ′n,m

∼= (Z/m)[An,m]/In,m, where In,m is as in 3.8 and 1 is identified with (the image of) c. Thus we have
A = limAn,m = lim(Z/n)2 = Ẑ2. For each n,m, we have a short exact sequence

0 −→ In,m −→ (Z/m)[An,m] −→M ′n,m −→ 0

Since all groups involved are finite, the limit functor is exact, so we get an exact sequence

0 −→ lim In,m −→ Ẑ[[A]] −→M ′ −→ 0.

It remains to show that lim In,m = 0. Indeed, the map Inm,m → In,m sends
∑nm−1
i=0 ai1 to m

∑n−1
i=0 a

i
1 = 0, and

similarly for a2.

3.4 Structure of Ẑ[[A]] ∼= Ẑ[[Ẑ2]]

Recall the following classical result (see [Wil98, Theorem 7.3.3])

Lemma 3.11. The completed group algebra Zp[[Znp ]] is isomorphic to the power series ring Zp[[s1, . . . , sn]], where
the ith canonical basis element of Znp corresponds to 1 + si (for i = 1, 2, . . . , n).

Here we give the analogous result for Ẑ[[A]]. Since Ẑ[[A]] =
∏
p Zp[[A]], it suffices to study the rings Zp[[A]].

Lemma 3.12. For each prime p, there is an (infinite) index set I and an isomorphism

Zp[[A]] ∼= Zp[[s1, s2]]×
∏
i∈I

Rp,i

satisfying

(a) Each Rp,i is a 2-variable power series ring over the ring of Witt vectors W (Fq) for some prime power
q = pr, where r ≥ 2 is coprime to p.

(b) For any generating pair a1, a2 ∈ A, the images of a1 − 1, a2 − 1 in Zp[[s1, s2]] generate the ideal 〈s1, s2〉.

(c) For any generating pair a1, a2 ∈ A and any i ∈ I, the images of a1 − 1, a2 − 1 in Rp,i are nonzero, and at
least one of them is a unit.

In particular, a1 − 1, a2 − 1 are regular elements of Ẑ[[A]], and

Ẑ[[A]] ∼= Ẑ[[s1, s2]]×
∏
p,i

Rp,i

Remark 3.13. Geometrically, Zp[[A]] is the affine algebra of the ind-group-scheme lim−→n≥1
µn × µn over Zp, and

the direct factor Zp[[s1, s2]] in the lemma is the affine algebra of the connected component of the identity.

Proof. Let Z(p′) be the prime-to-p part of Ẑ, so that A = Z2
p × (Z(p′))2. Let ⊗̂ denote the completed tensor

product over Zp, then we have Zp[[A]] ∼= Zp[[Z2
p]] ⊗̂Zp[[(Z(p′))2]]. By Lemma 3.11, Zp[[Z2

p]]
∼= Zp[[s1, s2]], with ai

mapping to 1 + si. It remains to study Zp[[(Z(p′))2]]. The ring Zp[[(Z(p′))2]] is the limit of the finite étale Zp-
algebras Sn := Zp[x1, x2]/(xn1 − 1, xn2 − 1) for n coprime to p. Each Sn is the product of finite étale Zp-algebras
Zp[x1, x2]/(f1(x1), f2(x2)), where fi ∈ Zp[x] ranges over monic irreducible factors of xn − 1. Let Cyc ⊂ Zp[x]
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denote the set of all polynomials which are monic irreducible factors of xm−1 for some m coprime to p. Passing
to the limit and tensoring with Zp[[Z2

p]]
∼= Zp[[s1, s2]], we have an isomorphism

Zp[[A]] ∼=
∏

(f1,f2)∈Cyc2

Zp[x1, x2]/(f1(x1), f2(x2))[[s1, s2]]︸ ︷︷ ︸
Sf1,f2

where ai maps to xi(1+si), and where each Sf1,f2 will further split into finite étale Zp[[s1, s2]]-algebras according
to the degrees of f1, f2 (which are coprime to p). It follows that Zp[[A]] contains only one direct factor isomorphic
to Zp[[s1, s2]], corresponding to f1 = f2 = x− 1, in which ai maps to 1 + si. This proves (a) and (b).

In the other direct factors, ai − 1 maps to xi(1 + si)− 1 = xisi + (xi − 1), where at least one of x1, x2 6= 1. This
proves (c).

The augmentation map
ε : Ẑ[[A]] −→ Ẑ

is the Ẑ-linear map given by sending A 7→ 1. For s ∈ Ẑ, let Ẑ[[A]]ε=s denote the subset with augmentation equal
to s. If a1, a2 is a generating pair of A, then the kernel of ε is generated by a1 − 1, a2 − 1, and is called the
augmentation ideal IA = Ẑ[[A]]ε=0. It follows from (8) that

Corollary 3.14. The image of det : IAEnd(M)→ Ẑ[[A]] is 1 + IA = Ẑ[[A]]ε=1.

Corollary 3.15. With notation as above, consider the sequence

0 −→ Ẑ[[A]]
d2−→ Ẑ[[A]]2

d1−→ Ẑ[[A]]
ε−→ Ẑ −→ 0 (9)

where d2 is given by (a1 − 1, a2 − 1), and d1 is given by (1− a2, a1 − 1). The sequence is exact.

Proof. This can be directly checked using Lemma 3.12. Alternatively, the first three nonzero terms of the
sequence (9) is called the Koszul complex associated to the ring Ẑ[[A]] and the elements a1 − 1, a2 − 1. It follows
from Lemma 3.12 that a1 − 1, a2 − 1 is a regular sequence for Ẑ[[A]]. The exactness of (9) follows from the fact
that the Koszul homology associated to a regular sequence vanishes in positive degrees, and the zeroth homology
is the quotient by the ideal generated by the regular sequence [Mat89, Theorem 16.5].

Corollary 3.16. Let x1, x2 ∈M be generators, c := [x1, x2]. Then

(a) The center of M is trivial.

(b) Any automorphism of M which acts as the identity on A and which maps c to a conjugate is inner.

(c) Any automorphism of M which act as the identity on both A and M ′ is equal to inn(z) for some z ∈M ′.

Proof. For (a), suppose z ∈ M is central, with image z ∈ A. Since z conjugates c into cz, by freeness of M ′

(3.10), it follows that z = 1, so z ∈ M ′ ∼= Ẑ[[A]]. Now note 1 = [x1, z] = x1zx
−1
1 z−1 = za1−1, so a1 − 1 kills z,

but since a1 − 1 is regular it follows that z = 1. Now let γ be an automorphism with the properties stated in
(c). For suitable ri ∈ Ẑ[[A]], we have γ(xi) = crixi, and

γ(c) = [cr1x1, c
r2x2] = cr1x1c

r2x2x
−1
1 c−r1x−1

2 c−r2 = cr1+a1r2−a2r1−r2 = c(1−a2)r1+(a1−1)r2

The assumption that γ(c) = c implies, by Corollary 3.15, that there is an r ∈ Ẑ[[A]] such that ri = (1− ai)b, in
which case one easily checks that γ is just inn(cb); this proves (c). Finally, let γ be an automorphism as in (b).
Then γ ◦ inn(det(γ))−1 acts as the identity on M ′, and hence (b) follows from (c).

Let Ẑ[[A]]×ε=1 be the group of units of Ẑ[[A]] which have augmentation 1. This contains A as a subgroup.

Corollary 3.17. The determinant det : IAut(M)→ Ẑ[[A]]×ε=1 induces an isomorphism

det : IOut(M)
∼−→ Ẑ[[A]]×ε=1/A
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Proof. The map IAut(M)→ Ẑ[[A]]×ε=1/A is surjective by Corollary 3.14, and has kernel Inn(M) by 3.16(b).

This implies that IOut(M) isn’t even topologically finitely generated. Contrast this with the discrete case, where
this group vanishes:

Theorem 3.18 (Nielsen, Bachmuth). Let F = F2 denote a (discrete) free group of rank 2, let M = M2 := F2/F
′′
2

denote a free (discrete) metabelian group of rank 2, and let A := F/F′ be the abelianization. The canonical maps
F →M → A induces surjections Aut(F) → Aut(M) → GL(A), and IAut(F), IAut(M) consist precisely of the
inner automorphisms. In particular, IOut(F) = IOut(M) = 1, and the surjections above induce isomorphisms
Out(F) ∼= Out(M) ∼= GL(A).

Proof. The relation between Aut(F) and GL(A) is a classical result of Nielsen [MKS04, §3, Corollaries 3.5.1,
N4]. The relation between Aut(M) and GL(A) follows from results of Bachmuth [Bac65, §4].

3.5 Splitting Out(M)

Let x1, x2 be generators for M , with c := [x1, x2]. By the universal property of M , for any x′1, x′2 ∈M , there is
a unique endomorphism γ of M mapping (x1, x2) 7→ (x′1, x

′
2). Let γab be the induced endomorphism of A.

The subgroup expc(IA) ≤ M ′ is characteristic in M . If U denotes the quotient, then we have a commutative
diagram with exact rows

1 Ẑ[[A]] M A 1

1 Ẑ U A 1

expc

ε

The group U is a free profinite class-2-nilpotent group of rank 2. In particular, U is a central extension of
A by Ẑ. If we write γ(c) = cr for some r ∈ Ẑ[[A]], then the problem of calculating the image of r by the
augmentation ε : Ẑ[[A]] → Ẑ takes place in U . On U , the commutator is a nondegenerate alternating bilinear
form U × U → U ′ ∼= Ẑ. This proves part (a) in the following

Proposition 3.19. With notation as above,

(a) The image of detc(γ) ∈ Ẑ[[A]] under the augmentation is det(γab) ∈ Ẑ ⊂ Ẑ[[A]].

(b) If γab is an automorphism of A, then there exist r1, r2 ∈ Ẑ[[A]] such that for the endomorphism γ′ sending
(x1, x2) 7→ (cr1x′1, c

r2x′2), we have
detc(γ

′) = det(γab)

In particular, γ′ is an automorphism, inducing γab on A.

Proof. Part (a) was proven above. For the second part, let a′1, a′2 be the images of x′1, x′2 in A. By assumption,
a′1, a

′
2 is a basis of A, so by lifting a′1, a

′
2 to generators of M [RZ10, Proposition 2.5.4], we find that there

is an automorphism of M lifting γab. Thus we may assume that γ is an automorphism, with determinant
detc(γ) = det(γab) + s = det(γab)(1 + s · det(γab)−1) for some s ∈ IA. Note that 1 + sdet(γab)−1 is a unit.

By 3.14, the determinant on IAEnd(M) surjects onto 1 + IA, so there is a δ ∈ IAut(M) with det(δ) = 1 +
sdet(γab)−1. Then γ′ := γ ◦ δ−1 has the desired properties.

Definition 3.20. Let Out(M, 〈c〉) denote the subgroup of Out(M) := Aut(M)/ Inn(M) which preserves the
conjugacy class of the procyclic subgroup generated by c. Thus, its elements are represented by automorphisms
which send c to a conjugate of cu for some u ∈ Ẑ×.

Remark 3.21. Proposition 3.19(a) implies that for any γ ∈ Out(M, 〈c〉) inducing γab on A, γ(c) is conjugate to
cdet(γab). This implies that the group Out(M, I) admits a “canonical” determinant, simply denoted

det : Out(M, I) −→ Ẑ×

which, for any generator c′ ∈ 〈c〉, satisfies det(γ) = detc(γ) = detc′(γ) = det(γab).
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Theorem 3.22. With notation as above, the canonical maps

Out(M, 〈c〉) −→ Out(U) −→ GL(A)

are isomorphisms. In particular, if IOut(M) := IAut(M)/ Inn(M), then the sequence

1 −→ IOut(M) −→ Out(M) −→ GL(A) −→ 1 (10)

is split exact, the splitting being given by GL(A) ∼= Out(M, 〈c〉) ≤ Out(M).

Proof. By 3.19, any automorphism γ of A can be lifted to an automorphism γ of M sending c 7→ cdet γ , which
proves the surjectivity of Out(M, 〈c〉) → GL(A). If γ ∈ Out(M, 〈c〉) acts trivially on A, then by 3.19 it
must in fact fix c, so by 3.16, it is inner. This shows the injectivity of Out(M, 〈c〉) → GL(A). Injectivity of
Out(U)→ GL(A) is similar.

Corollary 3.23. Let c ∈M ′ be a basis. Let G be a finite 2-generated metabelian group. The action of IOut(G) on
Epiext(M,G) commutes with the Out(M)-action, and permutes transitively the Out(M, 〈c〉)-orbits. In particular
the Out(M, 〈c〉)-orbits on Epiext(M,G) are all Out(M, 〈c〉)-equivariantly isomorphic to each other.

Proof. The fact that IOut(G) commutes with the Out(M)-action is just the associativity of function composition.
By Gaschütz lemma [RZ10, Proposition 2.5.4], Out(M) acts transitively on Epiext(M,G). Using the splitting of
the sequence (10), for a fixed ϕ ∈ Epiext(M,G), every element of Epiext(M,G) can be written as ϕ ◦ u ◦ γ for
some u ∈ IOut(M), γ ∈ Out(M, 〈c〉). By 3.5, we have a homomorphism ϕ∗ : IOut(M) −→ IOut(G) satisfying
ϕ ◦ u = ϕ∗(u) ◦ ϕ. Thus every element of Epiext(M,G) can be written as

v ◦ ϕ ◦ γ for some v ∈ IOut(G), γ ∈ Out(M, 〈c〉)

This shows that IOut(G) acts transitively on the Out(M, 〈c〉)-orbits, commuting with the Out(M, 〈c〉)-action.
Thus the Out(M, 〈c〉)-orbits are all isomorphic.

4 Nielsen equivalence and Koszul homology

4.1 The structure of IAut(G)

Lemma 4.1. Let f : R→ S be a surjection of profinite rings, then f induces a surjection on groups of units.

Proof. By considering induced maps on finite quotients, we are reduced to the case where R,S are finite. In
this case, let I := ker f and let m1, . . . ,mr be the maximal ideals of R not containing I. For a unit u ∈ S×, let
r ∈ f−1(u). Since I,m1, . . . ,mr are pairwise comaximal, by the Chinese remainder theorem we can find a ∈ R
with a ≡ 0 mod I, a ≡ 1−r mod mi for i = 1, . . . , r. Then r+a ∈ R× and f(r+a) = f(r) = u, as desired.9

Let G be a 2-generated profinite metabelian group. Let

εG : G′ −→ G′Gab = H0(Gab, G′)

be the module of Gab-coinvariants. Since G′ is a free RG-module of rank 1, εG is an analogue of the augmentation
Ẑ[[Gab]]→ Ẑ.

Definition 4.2. Let IAut1(G) := Ker(IAut(G)→ Aut(G′)).

Theorem 4.3. Let G be a 2-generated profinite metabelian group. The following sequence is exact

1 −→ IAut1(G)︸ ︷︷ ︸ −→ IAut(G)
det−→ AutGab(G′)︸ ︷︷ ︸

∼=R×G

(εG)∗−→ Aut(H0(Gab, G′)︸ ︷︷ ︸
G′
Gab

) −→ 1

Moreover G′Gab is a procyclic group.
9More generally if ker f is contained all but finitely many maximal ideals of R, then f induces a surjection on unit groups.

13



Proof. Exactness at IAut1(G) and IAut(G) is clear by definition, so it remains to prove procyclicity of G′Gab and
exactness at the last two terms. Let π : M → G be a surjection, using which we view G′ as a Ẑ[[A]]-module. Let
ε : M ′ →M ′A be the canonical map. Then π induces a diagram

M ′ M ′A

G′ G′Gab

ε

π π

εG

Let JG := AnnẐ[[A]](G
′), then picking a Ẑ[[A]]-basis for M ′, this diagram can be identified with the diagram

Ẑ[[A]] Ẑ = Ẑ[[A]]/IA

RG = Ẑ[[A]]/JG SG := Ẑ[[A]]/〈IA, JG〉

ε

π π

εG

(11)

In particular, we find that G′Gab
∼= SG is procyclic, and εG can be identified with the surjection of profinite rings

RG → SG. Since the source is a free RG-module of rank 1 and the target is a free SG-module of rank 1, the
induced map (εG)∗ on automorphism groups is identified with

(εG)∗ : R×G → S×G

which is surjective since surjections of profinite rings induce surjections on groups of units (Lemma 4.1).

Finally we prove exactness at AutGab(G′). By Theorem 3.6, any IA-automorphism ofG lifts to an IA-endomorphism
ofM , whose determinant has augmentation 1 by (8). The commutativity of the above diagram then implies that
im(det) ⊂ ker(εG)∗. It remains to show that ker(εG)∗ ⊂ im det. Let u ∈ R×G satisfy (εG)∗(u) = 1 ∈ S×G . Then
any lift of u to ũ ∈ Ẑ[[A]] must satisfy ũ = 1 + i+ j for i ∈ IA, j ∈ JG. Then ũ− j = 1 + i is another lift which
satisfies ε(ũ − j) = 1, and hence by 3.14 we may find β ∈ IAEnd(M) with det(β) = ũ − j. By 3.6, β descends
to an IA-endomorphism of G, which must be an IA-automorphism because it acts on G′ by multiplication by
u ∈ R×G. This completes the proof.

Definition 4.4. Let R×G,ε=1 := ker(εG)∗ ⊂ R×G. In particular, R×M,ε=1 = Ẑ[[A]]×ε=1 is the group (1 + IA)∩ Ẑ[[A]]×

of units with augmentation 1.

Remark 4.5. Taking kernels of ε, εG in (11) and applying the snake lemma, we find that for any surjection
π : M → G, the induced map Ẑ[[A]]→ RG induces a surjection Ẑ[[A]]×ε=1 � R×G,ε=1.

4.2 The structure of Epi(M,G)

Let G be a 2-generated profinite metabelian group. By Gaschütz’s lemma [RZ10, Proposition 2.5.4], the abelian-
ization ab : G→ Gab induces a surjection

ξ : Epi(M,G) −→ Epi(M,Gab)

ϕ 7→ ab ◦ ϕ

Proposition 4.6. The group IAut(G) acts freely and transitively on the fibers of ξ : Epi(M,G)→ Epi(M,Gab).
That is to say, ξ is a torsor under IAut(G).

Proof. Clearly IAut(G) acts freely on the fibers of ξ. Fixing a basis x1, x2 forM , if (g1, g2), (g′1, g
′
2) are generating

pairs of G with the same image in Gab, then we have g′i = [g1, g2]rigi for some ri ∈ RG. Let π : M → G be
the surjection sending xi 7→ gi, inducing a surjection π∗ : Ẑ[[A]] → RG. Then for any lifts of r1, r2 to r̃1, r̃2

of Ẑ[[A]], the map sending xi 7→ [x1, x2]r̃ixi defines an IA-endomorphism of M which by 3.6 descends to an
IA-endomorphism of G sending gi 7→ g′i. Since (g′1, g

′
2) generates G, this endomorphism is surjective, hence an

automorphism since finitely generated profinite groups are Hopfian [RZ10, Proposition 2.5.2].

14



Remark 4.7. The weaker statement that the fibers of ξ all have the same cardinality holds more generally by
the proof of Gaschütz’s lemma [RZ10, Proposition 2.5.4].

Corollary 4.8. Let G be a 2-generated profinite metabelian group and ϕ : M → G be a surjection. Let
ab : G→ Gab the abelianization. Then for any γ ∈ Aut(M), if ab ◦ ϕ ◦ γ = ab ◦ ϕ, then there exists a uniquely
determined α ∈ IAut(G) such that ϕ ◦ γ = α ◦ ϕ. Writing α = ϕ∗(γ), this defines a group homomorphism

ϕ∗ : StabAut(M)(ab ◦ ϕ) −→ IAut(G)

Proof. Follows immediately from Proposition 4.6.

Let Gens(G′) denote the set of RG-module generators of G′; this is a torsor under R×G, and hence any surjection
M → G induces a surjection Gens(M ′)→ Gens(G′). If c ∈M ′ is a Ẑ[[A]]-basis, we obtain a surjective map

κc : Epi(M,G) −→ Gens(G′)

ϕ 7→ ϕ(c)

In the following sections we will study the fibers of the map

ξ × κc : Epi(M,G) −→ Epi(M,Gab)×Gens(G′)

and its variations after imposing the equivalence relation generated by either conjugation by elements of G or
conjugation by elements of G′. It follows from the above discussion that

Corollary 4.9. For any choice of Ẑ[[A]]-basis c ∈M ′, the map ξ × κc is a torsor under the group IAut1(G).

Proof. Follows immediately from the definitions and Proposition 4.6.

Thus we will want to study appropriate quotients of the group IAut1(G). If this quotient is trivial, then a
generating pair of G is (up to equivalence) determined by its commutator and its image in Gab.

4.3 Outer automorphism groups of G
Definition 4.10. For a group G, let Inn′(G) ⊂ Inn(G) the subgroup of inner automorphisms realized by
conjugation by an element of G′. Recall IAut1(G) := Ker(IAut(G) → Aut(G′)). Let Inn1(G) := Inn(G) ∩
IAut1(G). We have the following notions of outer automorphism groups:

Out(G) := Aut(G)/ Inn(G) Out′(G) := Aut(G)/ Inn′(G)
IOut(G) := IAut(G)/ Inn(G) IOut′(G) := IAut(G)/ Inn′(G)

IOut1(G) := IAut1(G)/ Inn1(G) IOut′1(G) := IAut1(G)/ Inn′(G)
(12)

If G is profinite, we give these outer automorphism groups the quotient topology, and relative to this topology
they are profinite groups. Now suppose G is a 2-generated profinite metabelian group. Since G′ is a free
RG-module of rank 1, we may view the canonical representation as a homomorphism ρG : Gab → R×G,ε=1 (see
Definition 4.4). The determinant map det : IAut(G) → R×G,ε=1 (surjective by 4.3) descends to a surjection
IOut(G)→ R×G,ε=1/ρG(Gab). Then we also have

IOut1(G) = Ker
(

IOut(G) −→ R×G,ε=1/ρG(Gab)
)
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Let ab : G → Gab denote the abelianization. We summarize the relationships between these various outer
automorphism groups in the following diagram (all of whose rows and columns are exact)

1 1 1

1 Ker(ρG)/ab(Z(G)) Inn(G)/ Inn′(G) ρG(Gab) 1

1 IOut′1(G) IOut′(G) R×G,ε=1 1

1 IOut1(G) IOut(G) R×G,ε=1/ρG(Gab) 1

1 1 1

det

det

det

(13)

Proposition 4.11. The groups IAut(G), IAut1(G), IOut(G), IOut′(G), IOut1(G), IOut′1(G) are functorial for
surjections of profinite 2-generated metabelian groups.

Proof. Let f : G1 → G2 be a surjection of profinite 2-generated metabelian groups. Then for any surjection
π : M → G1, any α ∈ IAut(G1) can be lifted via π to an IA-automorphism of M , which descends to G2 by
3.6. This shows that IAut(G) is functorial. Since derived subgroups and inner automorphisms are preserved by
surjections of metabelian groups, the functoriality of the other groups follows from that of IAut(G).

In sections §4.4, §4.6 below, we will give homological interpretations to the groups IOut′1(G), IOut1(G).

4.4 Koszul homology and the structure of Epi(M,G)/ Inn′(G)

By 4.6 and 4.9, the map

ξ′ × κc : Epi(M,G)/ Inn′(G)→ Epi(M,Gab)×Gens(G′)

is a torsor under IOut′1(G). In this section we will show that IOut′1(G) can be identified with a certain homology
group, and give criteria for it to vanish, or equivalently, for the map ξ′ × κc to be a bijection.

4.4.1 IOut′1(G) via continuous cohomology

Let G be a 2-generated profinite metabelian group, and let γ ∈ IAEnd(G). Recall from §3.1 that the map
δγ : G→ G′ defined by δγ(g) = γ(g)g−1 is a continuous 1-cocycle. If Z1(G,G′) denotes the group of (continuous)
cocycles, the map γ 7→ δγ defines a continuous bijection of sets IAEnd(G) ∼=Sets Z

1(G,G′). Under this bijection,
composition in IAEnd(G) becomes twisted pointwise multiplication in Z1(G,G′): δγ◦γ′(g) = δγ(g)δγ′(g)det(γ)

for all g ∈ G.

For γ ∈ IAut1(G), δγ : G→ G′ factors through Gab, and γ 7→ δγ defines an isomorphism of groups

IAut1(G)
∼−→ Z1(Gab, G′). (14)

The subgroup of 1-coboundaries B1(Gab, G′) ⊂ Z1(Gab, G′) consists of functions δz : Gab → G′ (for z ∈ Gab)
defined by δz(a) = za−1. The first cohomology of Gab � G′ is [Tat76, §2]

H1(Gab, G′) := Z1(Gab, G′)/B1(Gab, G′).

Proposition 4.12. Let G be a 2-generated profinite metabelian group.
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(a) The isomorphism δ : IAut1(G)
∼−→ Z1(Gab, G′) induces an isomorphism IOut′1(G) ∼= H1(Gab, G′).

(b) For any basis c ∈M ′,

ξ′ × κc : Epi(M,G)/ Inn′(G) −→ Epi(M,Gab)×Gens(G′)

is a torsor under H1(Gab, G′).

Proof. For z ∈ G′, conjugation by z−1 sends g 7→ z−1gz = zg−1g, which is exactly the IA-automorphism
corresponding to the coboundary δz : Gab → G′ sending a 7→ za−1. This proves (a). Part (b) follows from
4.9.

Remark 4.13. A point of concern with the proposition is that there are some technical issues with cohomology
with profinite coefficient modules; for example, the category of profinite Ẑ[[G]]-modules generally does not have
enough injectives, so it is unclear if continuous cohomology is the right derived functor of the G-invariants
functor M 7→ MG (there is no problem if G is finite).10 In any case, there is a homological interpretation of
H1(Gab, G′) ∼= IOut′1(G), which is easier to work with. Note that the category of profinite Ẑ[[G]]-modules always
has enough projectives, so there is a well behaved theory of homology with profinite coefficients, given as the
left derived functor of the coinvariants M 7→MG. For more details, see [RZ10, §5-6].

4.4.2 IOut′1(G) via Koszul homology

Let G be a profinite 2-generated metabelian group. Let g1, g2 ∈ G be generators, with images g1, g2 ∈ Gab.
Then any α ∈ IAEnd(G) sends gi 7→ δα(gi)gi. Let λ denote the map (of sets)

λ = λg1,g2 : IAEnd(G) −→ G′ ×G′
α 7→ (δα(g1), δα(g2))

(15)

Proposition 4.14. The map λ is a continuous bijection. If λ(α) = (z1, z2) and λ(β) = (w1, w2), then in additive
notation for G′, we have the composition formula

λ(α ◦ β) = (z1 + det(α) · w1, z2 + det(α) · w2). (16)

In particular, λ restricts to an injective homomorphism IAut1(G)→ G′ ×G′.

Remark 4.15. A consequence of the bijectivity of λ is that for any (z1, z2) ∈ G′×G′, there is a unique 1-cocycle
γz1,z2 ∈ Z1(G,G′) with γz1,z2(gi) = zi.

Proof. Continuity, injectivity, and the composition formula are easy to check. To see that λ is surjective, lift
g1, g2 to generators x1, x2 of M . Then for any (z1, z2) ∈ G′ × G′, we lift z1, z2 to elements z̃1, z̃2 ∈ M ′. The
map (x1, x2) 7→ (z̃1x1, z̃2x2) defines an IA-endomorphism of M which by 3.6 descends to an IA-endomorphism
α ∈ IAut1(G) satisfying λ(α) = (z1, z2).

For α ∈ IAut(G) with λ(α) = (z1, z2) ∈ G′ ×G′, using the relation gz = zgg (for z ∈ G′, g ∈ G), we have

α([g1, g2]) = z1g1z2g2g
−1
1 z−1

1 g−1
2 z−1

2 = z
1−g2
1 z

g1−1
2 [g1, g2]

Since [g1, g2] generates G′ as a Ẑ[[Gab]]-module, by (8) we find that α ∈ IAut1(G) if and only if we have (using
additive notation for G′)

(1− g2) · z1 + (g1 − 1) · z2 = 0

If α ∈ IAut1(G) is given by conjugation by an element c−1 ∈ G′, then zigi = c−1gic = cgi−1gi, so written
additively in this case we have zi = (gi− 1) · c. This implies that IOut′1(G) = IAut1(G)/ Inn′(G) is precisely the
first homology of the Koszul complex of Ẑ[[Gab]]-modules (with terms in homological degrees 2,1,0)

Kos•(g1, g2) : G′
d2−→ G′ ×G′ d1−→ G′ (17)

10In our situation this is likely ok, using the work of Boggi and Cook, see Appendix 7.2.
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where the maps are given by (using additive notation)

d2 : z 7→ ((g1 − 1)z, (g2 − 1)z)
d1 : (z1, z2) 7→ (1− g2)z1 + (g1 − 1)z2

Note that the maps d1, d2 depend only on the images of g1, g2 in Gab.11 Thus, to construct this Koszul complex,
one only needs to know the canonical representation of G - one does not need to know the particular extension
of Gab by G′ that is realized by G.

In the case G = M with generators x1, x2, the image of d1 is IAM ′, so M ′/d1(M ′) ∼= Ẑ (with trivial A-action).
In this case we may extend the associated Koszul complex Kos•(x1, x2) to obtain

0 −→M ′
d2−→M ′ ×M ′ d1−→M ′ −→ Ẑ −→ 0 (18)

The following observation implies that the Koszul complex computes group homology:

Proposition 4.16. The complex (18) is a free Ẑ[[A]]-module resolution of Ẑ.

Proof. Since M ′ is a free Ẑ[[A]]-module of rank 1, this follows immediately from Corollary 3.15.

Theorem 4.17. Let x1, x2 be generators of M , and let π : M → G be a surjection, inducing πab : A → Gab.
Let Hi(A,G

′) denote the ith group homology relative to the Ẑ[[A]]-module structure on G induced by πab. Let
JG := AnnẐ[[A]](G

′). We have

(a) Hi(A,G
′) ∼= Hi(Kos•(π(x1), π(x2))) ∼= Tor

Ẑ[[A]]
i (Ẑ[[A]]/IA, Ẑ[[A]]/JG) for any i,

(b) H0(A,G′) = G′A = G′Gab = H0(Gab, G′),

(c) H1(A,G′) ∼= IOut′1(G) ∼= H1(Gab, G′),

(d) H2(A,G′) ∼= G′ ∩ Z(G) ∼= H0(Gab, G′),

(e) Hi(A,G
′) = 0 for i /∈ {0, 1, 2}, and

(f) when G = M we have
H0(A,M ′) = Ẑ and H1(A,M ′) = H2(A,M ′) = 0.

In particular the homology groups Hi(A,G
′), Hi(Kos•(π(x1), π(x2)) only depend on the Ẑ[[Gab]]-module structure

of G′, and are independent of the choice of surjection π or generators of M or G.

Remark 4.18. For a 2-generated profinite metabelian group G, we will often write Hi(A,G
′) without mentioning

the choice of surjection π : M → G. By the theorem, this is not ambiguous.

Proof. Part (b) is the definition of H0. Let a1, a2 be the images of x1, x2 in A. Note that Kos•(π(x1), π(x2)) =

Kos•(x1, x2) ⊗̂Ẑ[[A]]G
′, so Hi(A,G

′) = Tor
Ẑ[[A]]
i (Ẑ, G′) = Tor

Ẑ[[A]]
i (Ẑ[[A]]/IA, Ẑ[[A]]/JG) = Hi(Kos•(G

′, g1, g2)) by
Lemma 4.16. This immediately implies (a) and (e), and the discussion preceding Theorem 4.16 together with
4.12 implies (c). Next, we have H2(A,G′) ∼= H2(Kos•(G, π, a1, a2)) which consists of the elements of G′ fixed
by Gab, which is just H0(Gab, G′) = G′ ∩ Z(G), which proves (d). The description of Hi(A,M

′) follows from
Proposition 4.16.

11We use g1, g2 in the notation for convenience, since it simultaneously encodes g1, g2, G as well as G′.
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4.5 Explicit coeffaceability of H1(A,G
′) by finite modules

Recall the groups Mn,m = 〈z1, z2|zn1 = zn2 = [z1, z2]m = 1〉, defined in §3.2. From Proposition 3.8, we have

Rn,m := RMn,m
∼= Ẑ[[A]]/〈m,

n−1∑
i=0

ai1,

n−1∑
i=0

ai2〉

In this section we will show that for any 2-generated finite metabelian group G, there are integers n,m such that
there is a surjection Mn,m → G which induces the zero map H1(A,M ′n,m)→ H1(A,G′).

For n | n′, there is a natural surjection Mn′,m → Mn,m respecting canonical generators. For x ∈ Mn′,m, let x̄
denote its image in Mn,m.

Proposition 4.19. Let n,m ∈ Z≥1. The natural map f : Mnm,m →Mn,m induces the zero map

H1(A, f) : H1(A,M ′nm,m)
0−→ H1(A,Mn,m)

In particular, f induces the zero map IOut′1(Mnm,m)→ IOut′1(Mn,m).

Before we give the proof, we give an alternative statement of the proposition:

Corollary 4.20. Let (g1, g2), (g′1, g
′
2) ∈ Mn,m be two generating pairs with [g1, g2] conjugate to [g′1, g

′
2]. If there

exist lifts (g̃1, g̃2), (g̃′1, g̃
′
2) to Mnm,m such that

(a) (g̃1, g̃2) and (g̃′1, g̃
′
2) have the same images in Mab

nm,m
∼= (Z/nmZ)2, and

(b) [g̃1, g̃2] is conjugate to [g̃′1, g̃
′
2] in Mnm,m.

Then (g1, g2), (g′1, g
′
2) are (simultaneously) conjugate in Mn,m.

Proof. Possibly conjugating (g̃′1, g̃
′
2), we may assume that [g̃1, g̃2] = [g̃′1, g̃

′
2]. Proposition 4.14 then implies that

there is a unique IA-automorphism mapping α (g̃1, g̃2) to (g̃′1, g̃
′
2). By Proposition 4.19, α descends to an inner

automorphism of Mn,m, so (g1, g2) is conjugate to (g′1, g
′
2).

Proof of Proposition 4.19. By Theorem 4.17(a), we wish to show that the map

Kos•(f) : Kos•(Mnm,m, z1, z2) −→ Kos•(Mn,m, z1, z2)

induces the zero map on first homology. This map can be described as the map on total complexes induced by
the natural map of double complexes in homological bidegree {0, 1}2:

Rnm,m Rnm,m

Rnm,m Rnm,m

a2−1

a1−1

a2−1

a1−1 −→
Rn,m Rn,m

Rn,m Rn,m

a2−1

a1−1

a2−1

a1−1 (19)

For any integer k ≥ 1, let Rk := Z[a1, a2]/(1 + a1 + · · ·+ ak−1
1 , 1 + a2 + · · ·+ ak−1

2 ), so Rk,` = Rk/`Rk. Then the
morphism (19) is just the reduction mod m of the “same” map between double complexes:

Rnm Rnm

Rnm Rnm

a2−1

a1−1

a2−1

a1−1 −→
Rn Rn

Rn Rn

a2−1

a1−1

a2−1

a1−1 (20)

Let Sk := Z[a]/(1 + a + · · · + ak−1), then the total complexes associated to the double complexes of (20) are
isomorphic to the tensor squares of Snm

a−1−→ Snm (in degrees 0, 1), and similarly with Sn → Sn. Since Sk
a−1−→ Sk
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is a Z-free resolution of Z/k, it is homotopy equivalent to the simpler complex Z k→ Z. The morphism of
complexes

(Snm
a−1−→ Snm) → (Sn

a−1−→ Sn) (21)

whose tensor squares induce (20) induces the natural map Z/nm � Z/n. Therefore, by the “homotopy func-
toriality” of projective resolutions [Mat89, p278], (21) is homotopy equivalent to any morphism of complexes
(Z nm→ Z) → (Z n→ Z) inducing Z/nm → Z/n on cokernels. In particular, since the desired result is about
homology, we may replace (21) with the simpler morphism

(Z nm−→ Z)
(m,1)−→ (Z n−→ Z)

Taking tensor squares and reducing mod m, the map on homology induced by Kos•(f) (equivalently, by (19))
can thus be identified with the map on homology induced by

[
m 1
m2 m

]
:

Z/m Z/m

Z/m Z/m

nm

nm

nm

nm −→
Z/m Z/m

Z/m Z/m

n

n

n

n (22)

Since this map is clearly 0 on 1-chains of the total complex, this completes the proof.

4.6 The structure of Epiext(M,G) = Epi(M,G)/ Inn(G)

In this section we extend the results of §4.4 to the case where we work modulo Inn(G) instead of Inn′(G). Let
G be a 2-generated profinite metabelian group. In this case by 4.6, we find that

ξ : Epiext(M,G) −→ Epi(M,Gab)

is a torsor under IOut(G) = IAut(G)/ Inn(G). Accordingly, for any Ẑ[[A]]-basis c ∈M ′, the map

ξ × κc : Epiext(M,G) −→ Epi(M,Gab)×Gens(G′)/ Inn(G)

is a torsor under IOut1(G). In certain cases we will have IOut1(G) ∼= IOut′1(G) ∼= H1(A,G′):

Proposition 4.21. Let G be a 2-generated profinite metabelian group. Consider the following conditions on G

(a) G is a split extension of Gab by G′.

(b) The canonical representation ρG : Gab → R×G,ε=1 is faithful.

Then (a) implies (b), and in both cases, we have IOut1(G) ∼= IOut′1(G) ∼= H1(A,G′).

Proof. Suppose G is a split extension of Gab by G′. We will show that any inner automorphism of G which acts
trivially on G′ must lie in Inn′(G). Indeed, any g, h ∈ G can be written as g = za, h = wb with z, w ∈ G′ and
a, b in the split image of Gab. Then g centralizes G′ if and only if a does, in which case we have

ghg−1 = zawba−1z−1 = zawa−1bz−1 = zwbz−1

so conjugation by g is the same as conjugation by z ∈ G′, which shows that (a) implies (b). The isomor-
phism IOut′1(G) ∼= H1(A,G′) is Theorem 4.17. Finally, by (13), IOut1(G) is the quotient of H1(A,G′) by
ker(ρG)/ab(Z(G)), so we find that in both cases IOut1(G) = H1(A,G′).

Proposition 4.22. If G1, G2 are profinite 2-generated metabelian groups with isomorphic canonical representa-
tions, then IOut1(G1) ∼= IOut1(G2).
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Proof. Let G = G1. Since the Koszul complex depends only on the canonical representation of G, it will suffice
to show that one can compute IOut1(G) = IAut1(G)/ Inn1(G) from a Koszul complex for G. Let g1, g2 ∈ Gab

be generators. By Gaschütz’ lemma [RZ10, Proposition 2.5.4], we may find generators g1, g2 of G lifting g1, g2.
Let c := [g1, g2]. Then we know that IAut1(G) is isomorphic to the group of Koszul 1-cycles Z1(Kos•(g1, g2)).

We wish to show that the subgroup Inn1(G) can be described purely in the language of the canonical represen-
tation and the Koszul complex. This can be done using the map λ = λg1,g2 of (15). Explicitly, for g ∈ G, let
inng be the inner automorphism x 7→ gxg−1. Writing G′ in additive notation, note that λ(inng1) = (0, c), and
λ(inng2) = (−c, 0). Using the composition formula (16), we compute:

λ(inngn1 ) =
(
0, (1 + g1 + g2

1 + · · ·+ gn−1
1 ) · c

)
λ(inngn2 ) =

(
− (1 + g2 + g2

2 + · · ·+ gn−1
2 ) · c, 0

)
λ(inngn1 gm2 ) = (−gn1 (1 + g2 + g2

2 + · · ·+ gm−1
2 ) · c, (1 + g1 + g2

1 + · · ·+ gn−1
1 ) · c)

Letting λ(n,m) denote the final expression, λ(n,m) depends only on the choice of generators g1, g2 of Gab, so
λ(n,m) depend only on the canonical representation. It follows that under λ, elements of Inn1(G) correspond
to precisely the elements

{ζ ∈ Kos1(g1, g2) | ζ = λ(n,m) for some n,m ∈ Z} ∩ Z1(Kos•(g1, g2))

where {· · · } denotes closure. This gives the desired result.

Remark 4.23. Note that the two propositions above do not necessarily imply that IOut1(G) ∼= H1(A,G′) for
any 2-generated profinite metabelian group. This is because not every extension of Gab by G′ (realizing the
representation ρG) actually has abelianization Gab.

This leads to the question of determining whether or not a profinite extension G of a profinite abelian group B
by a profinite abelian group N satisfies Gab = B (equivalently G′ = N). This will also be relevant in §4.7.

Proposition 4.24. Let G be a 2-generated profinite group extension of a 2-generated profinite abelian group B
by a profinite B-module N . Let IB ⊂ Ẑ[[B]] be the augmentation ideal, and let NB := N/IBN be the module of
B-coinvariants. Then IBN is normal inside G, and G/IBN is a central extension of B by NB. The commutator
map B ×B → N sending (b, b′) 7→ [b, b′] induces a homomorphism

[∗, ∗] : B ∧̂B −→ NB

where B ∧̂B denotes the quotient of the completed tensor product B ⊗̂B by the subgroup generated by {b⊗ b | b ∈
B} (i.e., the “completed exterior square”). The following are equivalent

(a) G satisfies Gab = B and G′ = N .

(b) (G/IBN)′ = NB

(c) The homomorphism [∗, ∗] : B ∧̂B −→ NB is surjective.

Proof. First suppose that G is a central extension of B by N , then its commutator map [∗, ∗] : G×G −→ G′ ⊂ N
factors through a bilinear map [∗, ∗] : B × B −→ N , and since it is alternating, it further factors through a
homomorphism

[∗, ∗] : B ∧̂B −→ N

In this case we find that Gab = B if and only if this commutator map is surjective. In the general case, since
N is abelian, and IBN ≤ N is a Ẑ[[B]]-submodule, it follows that IBN ⊂ G is normal and G/IBN is a central
extension of B by NB , so [∗, ∗] : B ∧̂B → NB is a homomorphism. Note that since IBN ⊂ N ⊂ G′, the map
G→ G/IBN induces an isomorphism on abelianizations. Thus

G′ = N ⇐⇒ Gab = B ⇐⇒ (G/IBN)ab = B ⇐⇒ (G/IBN)′ = NB (23)

Thus (a) is equivalent to (b). Since (G/IBN)′ ⊂ NB , (c) implies (b); the converse holds because [∗, ∗] is a
homomorphism, so (b)⇐⇒ (c).
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4.7 Commutator rigidity
Definition 4.25. Let G be a 2-generated profinite metabelian group. We say that G is commutator rigid (or
just rigid) if IOut1(G) = 0. We say that G is strictly rigid if H1(A,G′) = 0.

As explained in the introduction, the arithmetic and geometric structure ofM(G) is particularly simple when G
is a rigid group. In this section we give criteria for rigidity, and compute IOut1(G), H1(A,G′) for various families
of 2-generated finite metabelian groups.

Proposition 4.26. Let G be a profinite 2-generated metabelian group. Fixing a surjection π : M → G and using
the associated Ẑ[[A]]-module structure on G′, let JG := AnnẐ[[A]](G

′). Then we have

(a) For all i ≥ 0, Hi(A,G
′) is annihilated by both IA and JG.

(b) H1(A,G′) is a subquotient of (G′Gab)2, and H2(A,G′) is a subquotient of G′Gab = H0(A,G′).

(c) G′Gab is a quotient of the completed exterior square Gab ∧̂Gab, and hence is procyclic.

(d) H1(A,G′) ∼= IA∩JG
IAJG

.

This immediately implies

Corollary 4.27. If G′Gab = 0, or if Gab ∧̂Gab has order coprime to |G′|, then Hi(A,G
′) = 0 for all i ≥ 0.

Proof of Proposition 4.26. Part (a) follows from the Tor-theoretic description of Hi(A,G
′) given by Theorem

4.17(a). By the Koszul theoretic description of Hi(A,G
′) given by the same result, H1(A,G′) is a subquotient

of G′ ×G′, and H0(A,G′), H2(A,G′) are subquotients of G′. Since they by part (a) they are killed by IA + JG,
since G′Gab

∼= Ẑ[[A]]/〈IA, JG〉, part (b) follows. Part (c) follows from Proposition 4.24.

For (d), the exact sequence of Ẑ[[A]]-modules

0 −→ JG −→ Ẑ[[A]] −→ Ẑ[[A]]/JG −→ 0

induces a long exact sequence of H1(A,−), the first five terms of which are

H1(A, Ẑ[[A]])︸ ︷︷ ︸
=0

−→ H1(A, Ẑ[[A]]/JG)︸ ︷︷ ︸
∼=H1(A,G′)

−→ JG ⊗ Ẑ[[A]]/IA
f−→ Ẑ[[A]]/IA −→ Ẑ[[A]]/〈IA, JG〉 −→ 0

Thus H1(A,G′) ∼= ker(f) = IA∩JG
IAJG

.

Remark 4.28. Let π : M → G be a surjection. Then H1(A,G′) = 0 if and only if π induces a surjection 0 =
H1(A,M ′)� H1(A,G′). By Theorem 4.17(c), using (13) and Remark 4.5, this is equivalent to the surjectivity of
IOut′(M)→ IOut′(G), or equivalently the surjectivity of IAut(M)→ IAut(G). Thus the failure of strict rigidity
is precisely the failure of surjectivity for IAut(M) → IAut(G). Note that every IA-automorphism of G can be
lifted to an IA-endomorphism of M (by Proposition 3.5), or to an automorphism of M (by Gaschütz’s lemma);
the issue is that the lifting IA-endomorphism may not be an automorphism, and the lifting automorphism may
not be IA.

Example 4.29 (Dihedral groups). The dihedral group D2n is the semidirect product of µ2 := {±1} by Z/n
acting by inversion. If n is odd, then Dab

2n = µ2 is cyclic, and hence by Corollary 4.27, D2n is strictly rigid in this
case. If n is even, then D′2n = 2Z/nZ is cyclic of order n/2, Z(D2n) = {[0], [n/2]} ≤ D′2n, and Dab

2n
∼= µn × {[0]

mod D′2n, [1] mod D′2n}, where [x] denotes the class of x mod n. In this case if n/2 is odd, then Dab
2n, D

′
2n have

coprime orders and hence again we find D2n is strictly rigid. If n/2 is even, then the Koszul complex (relative
to the generators (−1, [1]) of Dab

2n becomes:

2Z/n d2−→ 2Z/n× 2Z/n d1−→ 2Z/n

where d2(r) = (−2r, 0), and d1(r1, r2) = −2r2. From this we get H1(A,D′2n) = Z/2× Z/2. Since [1] ∈ Dab
2n acts

trivially on D′2n, by (13) we find that IOut1(D2n) ∼= Z/2, so D2n is not rigid in this case.
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Example 4.30 (The groups Mn,m). Let Mn,m be the groups defined in §3.2, with canonical generators z1, z2.
We will calculate Hi(A,Mn,m) using the Koszul complex.

Since the case n = 1 is trivial, we assume n ≥ 2. Let Rn,m := (Z/m)[a1, a2]/(1 + a1 · · ·+ an−1
1 , 1 + a2 · · ·+ an−1

2 )
as in Proposition 3.8, so Rn,m ∼= M ′n,m as Mab

n,m-modules. We wish to calculate the homology of the Koszul
complex (see (17))

Kos•(z1, z2) : Rn,m −→ Rn,m ×Rn,m −→ Rn,m

Write Sn := Z[a]/(1 + a+ · · ·+ an−1), and let C• be the complex Sn
a−1−→ Sn. As in Proposition 4.19, the Koszul

complex is the reduction mod m the tensor square C• ⊗Z C•. We clearly have H0(C•) = Z/n. Since n ≥ 2,
a − 1 and 1 + a + · · · + an−1 are distinct primes in the polynomial ring Z[a], which implies H1(C•) = 0. Thus
the Künneth formula [Wei94, Theorem 3.6.3] gives a short exact sequence

0 −→ 0 −→ H1(C⊗2
• ) −→ TorZ1 (Z/n,Z/n) −→ 0

hence H1(C⊗2
• ) = Z/n. Similarly we can compute H0(C⊗2

• ) = Z/n, and H2(C⊗2
• ) = 0. Next we apply Künneth

again to compute H1((C•)
⊗2 ⊗ Z/m), where Z/m is placed in degree 0. Since C⊗2

• consists of Z-free modules,
Künneth gives a split exact sequence

0 −→ H1(C⊗2
• )︸ ︷︷ ︸

Z/n

⊗H0(Z/m)︸ ︷︷ ︸
Z/m

−→ H1(C⊗2
• ⊗ Z/m) −→ TorZ1 (H0(C⊗2

• ), H0(Z/m))︸ ︷︷ ︸
{x∈Z/n | mx=0}

−→ 0

Hence we find H1(A,Mn,m) = H1(Kos•(z1, z2)) = H1(C⊗2
• ) = (Z/d)2, where d := gcd(n,m). Similarly we may

compute H0(A,Mn,m) = H2(A,Mn,m) = Z/d. We note that in this case the homology groups are the largest
possible given the restrictions provided by Proposition 4.26. This is not surprising since every finite 2-generated
metabelian group is a quotient of Mn,m for appropriate n,m. ♠♠♠ NOTE: [It is an interesting question to ask if
any finite 2-generated metabelian group is a quotient of Mn,m such that the induced map on H1 is surjective.]

Example 4.31 (Central extensions are (non-strictly) rigid). Let G be a 2-generated finite metabelian group
which is a central extension of Gab by G′. Let ab : G → Gab be the abelianization. Then we will show that
H1(A,G′) ∼= IOut′1(G) ∼= G′ ×G′, ab(Z(G)) has order |Gab|/|G′|2, and IOut1(G) = 0.

Since G is a central extension, the maps in the Koszul complex G′ → G′ × G′ → G′ are all 0, so H1(A,G′) =
G′ × G′. This also implies that Ker ρG = Gab. By (13), showing that IOut1(G) = 1 is equivalent to showing
that |ab(Z(G))| = |Gab|/|G′|2. Since G is a central extension, by 4.24, we have a surjective commutator map

[∗, ∗] : Gab ∧Gab −→ G′

which is a homomorphism, and a lifts to a central element ã ∈ Z(G) if and only if [∗, ∗](a ∧ b) = 0 (in additive
notation) for all b ∈ Gab. In particular G′ is cyclic; let e′ := |G′|. We claim that a lifts to a central element
if and only if a is an e′th multiple in Gab. Let a1, a2 be a basis for Gab, then since Gab ∧ Gab is cyclic,
Ker[∗, ∗] = 〈e′(a1 ∧ a2)〉. If a is an e′th multiple, then we may write a = e′c1a1 + e′c2a2 for some c1, c2 ∈ Z, so

a ∧ a1 = e′c2(a2 ∧ a1) = −e′c2(a1 ∧ a2), a ∧ a2 = e′c1(a1 ∧ a2)

so a∧ b ∈ Ker[∗, ∗] for any b ∈ Gab. Now suppose a is not an e′th multiple, then writing a = c1a1 + c2a2, assume
without loss of generality that c1 6≡ 0 mod e′. Then a ∧ a2 = c1(a1 ∧ a2) /∈ Ker[∗, ∗], so a does not lift to a
central element.

Write Gab = Z/n × Z/nm for some n,m ∈ Z≥1, then Gab ∧ Gab ∼= Z/n, and e′ | n. Since there are n
e′ ·

nm
e′

e′-multiples in Gab, we get |ab(Z(G)| = n2m
e′ = |Gab|

|G′|2 as desired.

5 Mondromy actions and the Galois theory of M(G)

In this section we make precise the setup needed to make the translations between algebra and geometry. The
notation π1(X,x) will by default denote the étale fundamental group of X. Whenever it makes sense, topological
fundamental groups will be denoted πtop

1 (X,x).
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5.1 Fundamental groups, inertia groups
Let K be a field with an embedding ι : K ↪→ C. Let K be its algebraic closure inside C. Let E be an elliptic
curve over K with origin O, E◦ := E −O the punctured curve, and EK , E

◦
K
, EC, E

◦
C their base changes to via ι.

If b is a base point, then by the Riemann existence theorem [Sza09, Theorem 5.7.4] we have an injective group
homomorphism

Πb := πtop
1 (E◦(C), b) −→ π1(E◦C, b)

∼= π1(E◦
K
, b)

where the isomorphism is induced by ι. Letting ∗∧ denote profinite completion, this injection induces an
isomorphism Π̂b = πtop

1 (E◦(C), b)∧ ∼= π1(E◦
K
, b). The group Πb is free on two generators. Let x1, x2 ∈ Πb

be a basis with positive intersection number (a “positively oriented basis”), then the conjugacy class of [x1, x2]
can be represented by a small loop winding once clockwise around the puncture – the cyclic subgroup it generates
(or its closure inside π1(E◦

K
, b)) is called an inertia subgroup at O, and is well-defined up to conjugation.

Sometimes it will be convenient to take as base point a tangential base point at O [Del89, §15] (also see [Che21,
§4.2]). Let t be a K-rational tangential base point, then we again have an injective group homomorphism

j : Πt := πtop
1 (E◦(C), t) −→ π1(E◦C, t)

∼= π1(E◦
K
, t)

which induces an isomorphism Π̂t
∼= π1(E◦

K
, t). However in this case π1(E◦

K
, t) is moreover equipped with a

canonical inertia subgroup It ∼= Ẑ, which is topologically generated by j([x1, x2]) for some positively oriented
basis x1, x2 of Πt as above. In particular the subgroup of π1(E◦

K
, t) generated by j([x1, x2]) does not depend on

the choice of embedding ι : K ↪→ C. If t′ is another tangential base point at O, then there is an isomorphism
π1(E◦

K
, t)

∼−→ π1(E◦
K
, t′) which is canonical up to conjugation by It (equivalently, It′).

5.2 Monodromy actions
The maps E◦

K
→ E◦ → SpecK induce an exact sequence of fundamental groups [Sza09, Proposition 5.6.1]

1 −→ π1(E◦
K
, t) −→ π1(E◦, t) −→ Gal(K/K) −→ 1 (24)

which is split by t; from this we get an action of Gal(K/K) on π1(E◦
K
, t). Note that while this action depends

on the choice of tangential base point t, the induced outer representation

ρGal
E◦/K : Gal(K/K)→ Out(π1(E◦

K
, t))

is canonically determined by (24).12 For any σ ∈ Gal(K/K) and any c ∈ It ⊂ π1(E◦
K
, t), we have

σ(c) = cχ(σ)

where χ : Gal(K/K) −→ Ẑ× is the cyclotomic character.

LetM(1) be the moduli stack of elliptic curves (over Z). Let πtop
1 (M(1)C, EC) be the topological fundamental

group (of the analytification of M(1)C). The universal elliptic curve over M(1)C gives rise to a geometric
monodromy representation [BBCL22, §2.1]

ρtop
E◦(C) : πtop

1 (M(1)C, EC) −→ Out(Πt)

which is an isomorphism onto the index 2 subgroup Out+(Πt) ≤ Out(Πt) consisting of outer automorphisms
which act with determinant 1 on the abelianization. Recall that the abelianization Πt → Πab

t induces an
isomorphism Out+(Πt) ∼= SL(Πab

t ); if we choose an isomorphism Πab
t
∼= Z2, then we have Out+(Πt) ∼= SL2(Z)

(Theorem 3.18). The group π1(top(M(1)C, EC), and hence Out+(Πt) can be identified with the mapping class
group of E◦C, and as such it preserves the conjugacy class of a loop winding around the puncture. That is to say,

Proposition 5.1. Let x1, x2 be generators of Πt. Then Out+(Πt) preserves the conjugacy class of c := [x1, x2].
12In fact if one restricts to only considering tangential base points, the action of Gal(K/K) on π1(E◦

K
, t) is canonically determined

up to conjugation by elements of It.
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Proof. This can also be checked algebraically: the group Aut(Πt) is generated by the automorphisms [MKS04, §3]

r : (x1, x2) 7→ (x−1
1 , x2)

s : (x1, x2) 7→ (x2, x1)
t : (x1, x2) 7→ (x−1

1 , x1x2)

Each generator acts by inverting [x1, x2] (up to conjugation), and since they all act with determinant −1 on Πab
t ,

3.18 implies that Out+(Πt) preserves [x1, x2].

The two monodromy representations ρGal
E◦/K , ρ

top
E◦(C) can be combined into a single representation as follows. The

embedding ι : K ↪→ K ⊂ C also induces an injective map

i : πtop
1 (M(1)C, EC)︸ ︷︷ ︸
∼=Out+(Πt)

−→ π1(M(1)C, EC) ∼= π1(M(1)K , EK)

which identifies the target with the profinite completion of the source. There is a homotopy exact sequence

1 −→ π1(M(1)K , EK) −→ π1(M(1)K , E) −→ Gal(K/K) −→ 1 [Zoo01, Corollary 6.6]

which is split by the K-point ofM(1)K corresponding to E. In particular π1(M(1)K , EK) is isomorphic to the

semidirect product ̂Out+(Πt) o Gal(K/K). The universal elliptic curve E →M(1)K induces an exact sequence

1 −→ π1(E◦
K
, t) −→ π1(E◦, t) −→ π1(M(1)K , EK) −→ 1

from which we obtain an arithmetic monodromy representation

ρE◦/K : π1(M(1)K , EK)︸ ︷︷ ︸
∼= ̂Out+(Πt)oGal(K/K)

−→ Out(π1(E◦
K
, t)) (25)

whose restrictions to Out+(Πt) and Gal(K/K) recovers ρtop
E◦(C), ρ

Gal
E◦/K respectively.

5.3 Moduli of elliptic curves with G-structures - the stacks M(G)

Let G be a finite group. LetM(1) denote the moduli stack of elliptic curves over Q and let M(1) be its coarse
scheme. In [Che17] the first author studied the moduli stacks M(G) of “elliptic curves with G-structures”.
Precisely, let TG be the sheafification of the functor M(1) → Sets which to an elliptic curve E/S associates
the set of isomorphism classes of G-torsors on E◦ := E − O which are geometrically connected over S. Then
M(G) is the stack overM(1) associated to the sheaf TG. Let M(G) denote the coarse scheme ofM(G). Thus
an object of M(G) is a pair (E/S, α) where E is an elliptic curve over some Q-scheme S and α ∈ TG(E/S) is
a “G-structure”, and morphisms of pairs are morphisms of elliptic curves respecting the G-structures. For more
details, see [BBCL22, §2.2], [Che18, §2.2], or [Che21, §2.5]. Here we review some of the basic properties ofM(G)
that we will need.

(a) LetM(1) denote the moduli stack of elliptic curves over Q. The map forgetting the G-structure

f :M(G) −→M(1)

is finite étale.

(b) Let E be an elliptic curve over K, where K is as in §5.1. Let t be a base point on E◦ (possibly tangential),
and Πt := πtop

1 (E◦(C), t). The geometric fiber of f :M(G)→M(1) above EK is in bijection with the set

f−1(E) = Epiext(π1(E◦
K
, t), G) := Epi(π1(E◦

K
, t), G)/ Inn(G) ∼= Epiext(Πt, G)

where the second bijection is induced by the isomorphism Π̂t
∼= π1(E◦

K
, t). The monodromy action of

π1(M(1), EK) ∼= ̂Out+(Πt) o Gal(K/Q) on f−1(E) can be described in terms of the outer actions of
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the complementary subgroups Gal(K/K) and ̂Out+(Πt) in π1(M(1), EK). The action of Gal(K/K) is

given by the canonical outer action on π1(E◦
K
, t) as above. The action of ̂Out+(Πt) is given by the

tautological outer action of Out+(Πt) on Πt, which defines an outer action on π1(E◦
K
, t) via the dense

injection Πt ↪→ π1(E◦
K
, t). Finally the set of G-structures on E is in bijection with the set of Gal(K/K)-

invariant elements of f−1(E).

(c) The stackM(G) is typically not connected. The mapM(G)C →M(G)K induced by ι induces a bijection
on connected components. By the Galois correspondence these connected components are in bijection with
the Out+(Πt)-orbits on Epiext(Πt, G). In particular, the (profinite completion of the) stabilizer of this
action is the fundamental group of the corresponding component, and so we can construct this component
explicitly as a quotient of the universal covering H of M(1)C. Explicitly, let x1, x2 ∈ Πt be a positively
oriented basis, using which we identify Out+(Πt) = SL2(Z). Then the component ofM(G)C corresponding
to the Out+(Π)-orbit of ϕ ∈ Epiext(Πt, G) is isomorphic to [H/Γϕ], where Γϕ := StabSL2(Z)(ϕ). Similarly
M(G)C is the disjoint union of the Riemann surfaces H/Γϕ.

5.4 Congruence subgroups
Recall that a subgroup Γ ≤ SL2(Z) is congruence if it contains

Γ(n) := Ker(SL2(Z)→ SL2(Z/nZ))

for some n ≥ 1. In this case the congruence level of Γ is the minimum n for which we have Γ ⊃ Γ(n). Let F be a
free group of rank 2. We say that a subgroup Γ ≤ Out+(F) is linearly congruence if relative to some isomorphism
Fab ∼= Z2, Γ maps under the induced isomorphism SL(Πab

t ) = SL2(Z) to a congruence subgroup of SL2(Z). We
note that this definition does not depend on the choice of isomorphism Fab ∼= Z2. This can also be characterized
in another way: by the universal property of profinite completion, the canonical map SL2(Z) ↪→ SL2(Ẑ) factors
through a surjection

p : ŜL2(Z) −→ SL2(Ẑ)

The fact that there exist noncongruence subgroups of SL2(Z) is precisely to say that p is not injective. The
kernel of p is the intersection of the closures of congruence subgroups inside ŜL2(Z) and is called the “congruence
kernel”.13 A subgroup of SL2(Z) is congruence if and only if its closure in ŜL2(Z) contains the congruence kernel.

The linear congruence kernel of Out+(F) is the subgroup of ̂Out+(F) corresponding to the congruence kernel of
ŜL2(Z) under the isomorphism Out+(F) ∼= SL2(Z) induced by any isomorphism Fab ∼= Z2.

We may apply the above discussion in the case F = Πt, where Πt is as in §5.3. In this case we choose an
isomorphism Πab

t
∼= Z2 defined using a positively oriented basis of Πt, from which we get an isomorphism

Out+(Πt) ∼= SL2(Z).

Definition 5.2. Let G be a finite group. We say that a component M ⊂ M(G)C is congruence if for some
choice of base point x, the image of the map πtop

1 (M, x)→ πtop
1 (M(1)C, EC) = Out+(Πt) induced by the cover

M⊂M(G)C →M(1)C is a linearly congruence subgroup of Out+(Πt). The congruence level ofM is congruence
level of the corresponding subgroup of SL2(Z). If K,K are as in §5.1, then we say a component of M(G)K is
congruence if the corresponding component ofM(G)C is so.

Proposition 5.3. Let G be a finite group. Let K,K be as in §5.1. Let E be an elliptic curve over K, with
tangential base point t at O ∈ E, and topological fundamental group Πt := πtop

1 (E◦(C), t). We have a natural
action of Out+(Πt) on Epiext(Πt, G) := Epi(Πt, G)/ Inn(G). Since the latter is a finite set, this action extends

uniquely to an action of ̂Out+(Πt). The following are equivalent.

(a) Every component ofM(G)K is congruence.

(b) The kernel of the Out+(Πt)-action on Epiext(Πt, G) is linearly congruence.
13This is a free profinite group of countably infinite rank. See [RZ10, Theorem 8.8.1] or [Mel76].
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(c) The kernel of the ̂Out+(Πt)-action on Epiext(Πt, G) contains the linear congruence kernel.

Proof. Follows immediately from the description of the components ofM(G) in §5.3.

We chose to use the term “linearly congruence” to distinguish it from another notion of congruence subgroups:

Definition 5.4 (c.f. [BER11]). Let B be a finitely generated, residually finite group. For any finite index
characteristic subgroup K ≤ B, let Γ[K] := Ker(Aut(B)→ Aut(B/K)). A subgroup of Aut(B) is a congruence
subgroup if it contains Γ[K] for some such K. We say that Aut(B) has the congruence subgroup property if every
finite index subgroup of Aut(B) is congruence.

Let τpf denote the full profinite topology on Aut(B), and let τc denote the profinite topology generated by the
finite index subgroups Γ[K] as K ranges over finite index characteristic subgroups of B. Then Aut(B) satisfies
the congruence subgroup property if and only if τc = τpf .14 By [RZ10, Lemma 3.2.6], the congruence subgroup
property for Aut(B) is also equivalent to the injectivity of the canonical map

Âut(B) −→ Aut(B̂)

induced by the inclusion Aut(B) ↪→ Aut(B̂). When B = F ∼= Πt is a free group of rank 2, a theorem of Asada
[Asa01,BER11] shows that Aut(Πt) has the congruence subgroup property in sense of Definition 5.4. Extending
this notion in the natural way to Out(Πt) and Out+(Πt), this implies that Out+(Πt) “has the congruence subgroup
property”, even though the isomorphic group SL2(Z) does not. This explains why we use the terminology “linearly
congruence”. This also implies that the components ofM(G)C form a cofinal set amongst the finite étale covers
ofM(1)C.

The group SL2(Ẑ) is further discussed in the Appendix §7.1.

5.5 Summary of notation
We summarize the notation used in the discussion above.

Situation 5.5. In this situation we use the following notation:

(a) Let K be a field with an embedding ι : K ↪→ C. Let K be the algebraic closure of K inside C.

(b) Let E be an elliptic curve over K with origin O, let E◦ := E − O, and let EK , E
◦
K
, EC, E

◦
C be the base

changes via ι.

(c) Let t be a tangential base point at O.

(d) Let Π = Πt := πtop
1 (E◦(C), t).

(e) Let F := π1(E◦
K
, t), M := F/F ′′ its metabelianization, A = F/F ′ = M/M ′ the abelianization.

(f) Let j : Π ↪→ F = π1(E◦
K
, t) the canonical injection which induces an isomorphism Π̂ ∼= F .

(g) Let I = It ≤ F = π1(E◦
K
, t) be the associated canonical inertia subgroup. It is isomorphic to Ẑ with

Gal(K/K) acting via the cyclotomic character χ : Gal(K/K) −→ Ẑ×.

(h) Let x1, x2 be a positively oriented basis of Π such that j([x1, x2]) generates I.

(i) Let Out(M, I) be the subgroup of Out(M) preserving the conjugacy class of the subgroup I.

(j) The pair x1, x2 defines maps Π
j
↪→ F → Ẑ2 sending (x1, x2) 7→ ((1, 0), (0, 1)). This in turn induces maps

Out(Π) ↪→ Out(F )� Out(M)� GL2(Ẑ)

and isomorphisms Out(Π) ∼= GL2(Z), Out+(Π) ∼= SL2(Z) (Theorem 3.18).

14The importance of the congruence subgroup topology is that its natural extension to Aut(B̂) agrees with the compact-open
topology on Aut(B̂), and this makes Aut(B̂) into a profinite group [RZ10, 4.4.2, 4.4.3].
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(k) Let ρE◦/K : ̂Out+(Π) o Gal(K/K) ∼= π1(M(1)K , E) −→ Out(F ) be the arithmetic monodromy represen-
tation (25).

(l) The restrictions of ρE◦/K to Out+(Π),Gal(K/K) recovers the representations ρtop
E◦(C), ρ

Gal
E◦/K respectively.

6 Geometric applications
In this section we apply the algebraic results of the previous sections to study the stacks M(G)Q when G is
metabelian. Throughout this section G is a finite 2-generated metabelian group. Let ab : G → Gab be the
abelianization. Let (E,K, t,Π, I, F,M,A, x1, x2, . . .) be as in Situation 5.5. The maps Out(Π) ↪→ Out(F ) �
Out(M)� GL2(Ẑ) induce an isomorphism Out(M, I)

∼−→ GL2(Ẑ) by Theorem 3.22 and isomorphisms Out(Π) ∼=
GL2(Z), Out+(Π) ∼= SL2(Z). We will often use these isomorphisms to identify subgroups of Out(M, I) with
their images in GL2(Ẑ). Recall that Out(M, I) admits a canonical determinant map (Remark 3.21)

det : Out(M, I) −→ Ẑ×

satisfying det(γ) = det(γab) = detc(γ) for any generator c ∈ I. Let

Out+(M, I) := {γ ∈ Out(M, I) | det(γ) = 1}

Thus Out+(M, I) ≤ Out(M, I) is mapped isomorphically onto the subgroup SL2(Ẑ) ≤ GL2(Ẑ). For any ϕ ∈
Epiext(Π, G) = Epiext(M,G) and integer n ≥ 1, let

ĜΓϕ := StabOut(M,I)(ϕ)

Γϕ := StabOut+(Π)(ϕ)

ĜΓ(n) := ĜΓM→(Z/n)2 = Ker
(

Out(M, I)
∼−→ GL2(Ẑ)→ GL2(Z/n)

)
Γ(n) := ΓΠ→(Z/n)2 = Ker

(
Out+(Π) −→ SL2(Z/n)

)
We note that our definition of Γ(n) in this section differs from the classical definition given in §5.4. However,
under the isomorphism Out+(Π)

∼−→ SL2(Z) defined by x1, x2, our Γ(n) ≤ Out+(Π) is sent isomorphically onto
the classical principal congruence subgroup of SL2(Z) of §5.4, so there is little ambiguity.

6.1 Image of the pro-metabelian monodromy representation
Theorem 6.1. The image of the metabelian arithmetic monodromy representation

ρmeta
E◦/K : π1(M(1)K , EK)

ρE◦/K−→ Out(F )� Out(M)

is contained in the subgroup Out(M, I), and hence is isomorphic to its image in Out(F ab) ∼= GL2(Ẑ). In
particular, for any finite metabelian group G, the components of M(G)K are all congruence (equivalently, the
groups Γϕ are linearly congruence).

Proof. For the first statement, using the decomoposition π1(M(1)K , E) ∼= ̂Out+(Π)oGal(K/K), we must show
that each of the semidirect factors maps to Out(M, I). Let

detc : Out(M) −→ Ẑ[[A]]×/A

be the map induced by detc : Aut(M)→ Ẑ[[A]]×. By Proposition 5.1, Out+(Π) preserves the conjugacy class of

elements of I, so its image in Out(M) satisfies detc = 1. Since detc is continuous, the image of ̂Out+(Π) also

satisfies detc = 1. Thus ̂Out+(Π) maps to Out(M, I). Since Gal(K/K) acts on I via the cyclotomic character
χ : Gal(K/K)→ Ẑ×, we have detc(σ) = χ(σ) for any σ ∈ Gal(K/K), so Gal(K/K) also maps to Out(M, I).

For the final statement, since G is a finite metabelian group, the action of ̂Out+(Π) on Epiext(Π, G) factors
through its action on Π/Π′′ = M . Since its action on M is isomorphic to its action on A, the kernel of this
action contains the congruence kernel, so by Proposition 5.3, the components ofM(G)K are all congruence.
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We summarize the content of Theorem 6.1 in the following commutative diagram:

π1(M(1)K , EK) π1(M(1)K , EK) o Gal(K/K) Out(M, I) Out(M)

Gal(K/K) π1(M(1)K , EK)︸ ︷︷ ︸
̂Out+(Π)

SL(A) GL(A)

Ẑ×

∼

ρmeta
E◦/K

∼

χ

det

(26)

In particular, the representation ρmeta
E◦/K surjects onto the subgroup Out(M, I) if and only if the cyclotomic

character χ : Gal(K/K) −→ Ẑ× is surjective.

Corollary 6.2. The action of Gal(K/K) on the connected components ofM(G)K factors through an action of
Ẑ× via the cyclotomic character χ : Gal(K/K) −→ Ẑ×.

Proof. By Galois theory the action of Gal(K/K) on connected components is given by its action on the orbits of
π1(M(1)K , EK) acting on Epiext(Π, G) = Epiext(M,G) via ρmeta

E◦/K . The statement then follows from the diagram
(26).

As a corollary we recover a result of Ben-Ezra and Lubotzky [BEL17]. Recall that M is a discrete free metabelian
group of rank 2, and for a finitely generated group G, Aut(G) (reps. Out(G)) satisfies the congruence subgroup
property if every finite index subgroup of Aut(G) (resp. Out(G)) contains Γ[K] := Ker(Aut(G) → Aut(G/K))
(resp. ∆[K] := Ker(Out(G)→ Out(G/K))) for some finite index characteristic subgroup K.

Corollary 6.3 (Ben-Ezra, Lubotzky). Aut(M) does not have the congruence subgroup property.15

Proof. By 3.16(a) M has trivial center, so it suffices to show the result for Out(M) [BER11, Lemma 3.1]. Let
K ≤M be a finite index characteristic subgroup. Then 6.1 and 5.3 together imply that ∆[K] := Ker(Out(M)→
Out(M/K)) is a linearly congruence subgroup of Out(M). Since Out(M) ∼= SL2(Z) has finite index subgroups
which are not linearly congruence, it follows that Out(M), and hence Aut(M), does not have the congruence
subgroup property.

6.2 The structure of M(G)

We maintain the notation described in the beginning of §6. In this section we study the stacksM(G)Q, which
amounts to understanding the stabilizers ĜΓϕ and Γϕ for ϕ ∈ Epiext(M,G). Our main objective is to study
the congruence level of components of M(G), both arithmetically and geometrically. We will do this by first
boundingM(G) “from above” (§6.2.1), by showing that every component is covered by a component ofM(B)
for some finite abelian group B. Next, in §6.2.2, we will boundM(G) “from below”, by using IOut1(G) to control
the degree of the mapM(G)→M(Gab), which provides additional bounds on the congruence level.

6.2.1 Bounding M(G) from above

Theorem 6.4. Suppose G is a quotient of Mn,m for some integers n,m ≥ 1 (see §3.2). The group Out(G) acts
as automorphisms of the coverM(G)Q →M(1)Q, and we have

(a) IOut(G) permutes transitively the connected components of M(G)Q, which are hence all isomorphic as
covers ofM(G)Q.

15See Defintion 5.4 for the definition of the congruence subgroup property.
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(b) Every connected componentM⊂M(G)Q is a quotient ofM((Z/nm)2)Q by a subgroup of GL2(Z/nm).

(c) If G has exponent e, then every connected componentM⊂M(G)K is a quotient of a connected component
ofM((Z/e)2)K by a subgroup of SL2(Z/e). In particular,M has congruence level dividing e.

Note that part (c) immediately implies:

Example 6.5 (Free metabelian groups of exponent e). Let Me denote the free 2-generated metabelian group of
exponent e.16 Let ϕ ∈ Epiext(M,G). Clearly Mab

e
∼= Z/e × Z/e, so we have Γϕ ⊂ Γab◦ϕ = Γ(e). On the other

hand Theorem 6.4(c) implies that Γϕ ⊃ Γ(e), so we must have Γϕ = Γ(e). In particular M(Me)C is a disjoint
union of copies of [H/Γ(n)].

Remark 6.6. We make some observations regarding Theorem 6.4.

(i) Note that if e′ denotes the exponent of G′, G is a quotient of Me,e′ , so we can always take (n,m) = (e, e′).

(ii) Group-theoretically, (a) says that the action of IOut(G) on Epiext(M,G) commutes with the Out(M, I)-
action and acts transitively on the Out(M, I)-orbits; (b) says that ĜΓϕ ⊃ ĜΓ(nm); and (c) says that
Γϕ ⊃ Γ(e).

(iii) Part (a) implies that the connected components of M(G)Q are all Galois conjugates of each other. To
be precise, for any two components M,M′ ⊂ M(G)Q, there is a σ ∈ Gal(Q/Q) and an isomorphism
σ̃ :M ∼−→M′ making the following diagram commute

M M′

SpecQ SpecQ

σ̃

σ

Thus, part (a) implies that the connected components of M(G)Q are all isomorphic as stacks, but not
necessarily as covers of M(1)Q. The components are all isomorphic as covers of M(1)Q if and only
if the centralizer of the Out+(M, I)-action on Epiext(M,G) acts transitively on the Out+(M, I)-orbits.
Since the centralizer contains IOut(G), the components lying over a given component of M(Gab)Q are
all isomorphic. The set of components of M(Gab)Q can be identified with the set of generators of the
cyclic group Gab ∧ Gab. Using the basis x1, x2 ∈ M , this set of generators can in turn be identified with
(Z/n)×, where n = |Gab ∧Gab|. For u ∈ (Z/n)×, writeMu for the component ofM(Gab)Q corresponding
to u. Since the centralizer contains the center of Out(M, I) ∼= GL2(Ẑ), for any u, u′ ∈ (Z/n)× satisfying
u2 = (u′)2, the components lying overMu ∪Mu′ are all isomorphic. Thus to show that the components
ofM(G)Q are all isomorphic as covers ofM(1)Q, it would suffice to show that the centralizer induces as
transitive action on the quotient of (Z/n)× by its subgroup of squares. An natural guess is to wonder if
this holds for the action of Out(G), but unfortunately this is false. The smallest example is for a group G,
a non-split extension of Gab ∼= (Z/3)2 by G′ ∼= (Z/3)3, with Z(G) ∼= (Z/3)2 ≤ G′.17 For this group G, the
image of Aut(G) → Aut(Gab) ∼= GL2(Z/3) lies in SL2(Z/3). Nonetheless, one can compute that M(G)Q
consists of two connected components which are isomorphic to each other overM(1)Q.

Proof of Theorem 6.4. The geometric fiber ofM(G)Q →M(1)Q over EK is given by Epiext(M,G), which admits
an action of Out(G) on the target, commuting with the monodromy action of π1(M(1)Q, E) on the source. By
Theorem 6.1, the action of π1(M(1)Q, E) factors through Out(M, I). Thus part (a) is the Galois-theoretic
translation of Corollary 3.23.

Let ϕ : M → G be a surjection. For (b), we must show that ĜΓϕ ⊃ ĜΓ(nm). Indeed, ϕ factors as M →
Mnm,m →Mn,m → G. If ψ denotes the composition M →Mnm,m →Mn,m, then we have ĜΓϕ ⊃ ĜΓψ. We will
show that ĜΓψ ⊃ ĜΓ(nm). Let γ ∈ ĜΓ(nm), then we want to show that ψ ◦ γ is conjugate to ψ by an inner
automorphism of Mn,m, or equivalently the generating pair ((ψ ◦γ)(x1), (ψ ◦γ)(x2)) of Mn,m is conjugate to the

16This is a finite group – indeed M ′e,Mab
e are both finite since they are finitely generated and abelian of bounded exponent.

17This group can be accessed in GAP as SmallGroup(243,7).

30

SmallGroup(243,7)


pair (ψ(x1), ψ(x2)). For this it suffices to check that the criteria of Corollary 4.20 are satisfied, but this is clear -
(a) is satisfied since γ ∈ ĜΓ(nm). For (b), note [(ψ ◦ γ)(x1), (ψ ◦ γ)(x2)] = [ψ(x1), ψ(x2)]det(γ); since M ′nm,m has
exponent m and γ preserves I with det(γ) ≡ 1 mod nm, these commutators are the same, so (b) is satisfied.

For (c), we must show that Γϕ ⊃ Γ(e), but this follows immediately from Corollary 7.2 in the appendix.

6.2.2 Bounding M(G) from below

Theorem 6.4 implies that if G is a quotient of Mn,m, then for ϕ ∈ Epiext(M,G), ĜΓϕ ⊃ ĜΓ(nm) and Γϕ ⊃ Γ(e).
Let ab : G→ Gab be the abelianization; then we have

ĜΓab◦ϕ ⊃ ĜΓϕ ⊃ ĜΓ(nm) and Γab◦ϕ ⊃ Γϕ ⊃ Γ(e) (27)

In the remainder of this section we study the first containments. The key observation is that by Corollary
4.8, ϕ induces a map ϕ∗ : ĜΓab◦ϕ −→ IOut(G) with kernel ĜΓϕ. Let e′ be the exponent of G′, and let
ĜΓab◦ϕ,det≡1(e′) ≤ ĜΓab◦ϕ be the subgroup consisting of elements with determinant ≡ 1 mod e′. Then on this
subgroup ϕ∗ takes values in IOut1(G). To summarize,

Proposition 6.7. Let ϕ ∈ Epiext(M,G). Then with notation as above, we have a diagram with exact rows:

1 ĜΓϕ ĜΓab◦ϕ IOut(G)

1 ĜΓϕ ∩ ĜΓab◦ϕ,det≡1(e′) ĜΓab◦ϕ,det≡1(e′) IOut1(G)

ϕ∗

ϕ∗

(28)

Restricting to Γϕ, we also have an exact sequence

1 −→ Γϕ −→ Γab◦ϕ
ϕ∗−→ IOut1(G)

Proof. Follows from the above discussion.

This allows us to control the field of definition of connected components ofM(G) in terms of IOut1(G).

Theorem 6.8. Let n be the order of the cyclic group Gab∧Gab, and let m := lcm(n, e′). Then there is a number
field L containing Q(ζm) with Gal(L/Q(ζm)) ≤ IOut1(G) such that the connected components of M(G)L are
geometrically connected over L. In fact L is contained in a cyclotomic field, and hence abelian over Q.

Proof. Let ϕ : M −→ G be a surjection. Let Γϕ denote the closure of the image of Γϕ inside Out+(M, I) ∼=
SL2(Ẑ). For a number field L, let MonQ,MonL denote the monodromy images of π1(M(1)Q, EQ), π1(M(1)L, EQ)
inside Out(M, I) respectively. Then we have a commutative diagram

1 MonQ MonL det(MonL) 1

1 Γϕ ∩MonQ ĜΓϕ ∩MonL det(ĜΓϕ ∩MonL) 1

det

det

where det is the restriction of the “canonical” determinant Out(M, I) → Ẑ×, the rows are exact, and each
vertical arrow is the inclusion of a finite index subgroup. By Theorem 6.4(a), the components ofM(G)L are all
geometrically connected over L if and only if the component corresponding to ϕ is geometrically connected. By
Galois theory this happens if and only if [MonQ : Γϕ∩MonQ] = [MonL : ĜΓϕ∩MonL], or equivalently, if and only
if det(MonL) = det(ĜΓϕ∩MonL) as subgroups of Ẑ×. Since MonL contains the kernel of det : Out(M, I)→ Ẑ×,
det(ĜΓϕ ∩MonL) = det(ĜΓϕ) ∩ det(MonL). From the diagram (26), det(MonL) = χ(Gal(Q/L)), so our task is
to choose an appropriate L such that χ(Gal(Q/L)) ⊂ det(ĜΓϕ).
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By Remark 3.21 we know det ĜΓab◦ϕ = 1 + nẐ, so det(ĜΓab◦ϕ,det≡1(e′)) = 1 + mẐ. The bottom row of (28)
then implies that D := det(ĜΓϕ ∩ ĜΓab◦ϕ,det≡1(e′)) is a normal subgroup of 1 + mẐ with quotient a subgroup
of IOut1(G). Taking L to be the fixed field of χ−1(D), we find that L is contained in a cyclotomic field and is
Galois over Q(ζm) with Galois group a subgroup of IOut1(G), as desired.

Since abelian quotients of congruence subgroups by congruence subgroups are relatively small (Proposition 7.3),
the fact that Γϕ/Γab◦ϕ is abelian implies additional restrictions on the congruence level of Γϕ. In the simplest
case, suppose Gab = Z/n × Z/n where n is odd, then Γab◦ϕ = Γ(n) and Γϕ is a (linear) congruence subgroup
normal inside Γ(n) with abelian quotient isomorphic to a subgroup of IOut1(G). Ifm is the exponent of IOut1(G),
then the structure of “coabelian” linear congruence subgroups of Γ(n) described in §7.1 implies that Γϕ has linear
congruence level dividing nm.

To give a precise statement, for integers n,m, let ϕn,m : Π → Z/n × Z/m be a surjection sending x1, x2 to
elements of order n,m respectively. Define

Γ(n,m) := StabOut+(Π)(ϕn,m) Γ1(n) := Γ(n, 1)

Let h : Out+(Π)
∼−→ SL2(Z) be the isomorphism defined by x1, x2. Then via h, Γ(n,m) is mapped onto the

subgroup of SL2(Z) given by matrices
[
a b
c d

]
with a− 1 ≡ b ≡ 0 mod n and c ≡ d− 1 ≡ 0 mod m.

Theorem 6.9. Let G be a 2-generated finite metabelian group, and suppose Gab ∼= Z/nd × Z/n for integers
d, n ≥ 1. Let ϕ : Π → G be a surjection. For a subgroup Γ ≤ Out+(Π), write Γ for its closure inside SL2(Zp)
via h. Let pωp denote the exponent of the Sylow-p subgroup of IOut1(G). Let r := ordp(n), s := ordp(d). Then

(a) 0 ≤ ωp ≤ r,

(b) if r = 0, then Γϕ = Γab◦ϕ is conjugate to Γ1(ps) in GL2(Zp), and

(c) if r ≥ 1, then Γϕ contains a GL2(Zp)-conjugate of Γ(pr+s+ωp , pr+ωp).

In particular, if ε =
∏
p p

ωp denotes the exponent of IOut1(G), then ε | n and the linear congruence level of Γϕ
divides ndε. If IOut1(G) = 0 (i.e. G is rigid), then the map M(G)Q →M(Gab)Q restricts to an isomorphism
on any connected component, and there exist precisely |R×G,ε=1/ρG(Gab)| components of M(G)Q lying over any
component ofM(Gab)Q (see (13)).

Proof. Part (a) from Proposition 4.26(b),(c); this also implies ε | n. The statements appearing below (c) follows
from (b) and (c).

We now prove parts (b) and (c). We will first prove them assuming that ab ◦ϕ sends x1, x2 to elements of order
nd, n respectively. From Proposition 6.7, we know that for any prime p, Γab◦ϕ

′
E Γϕ E Γab◦ϕ with Γab◦ϕ/Γϕ

isomorphic to a subgroup of IOut1(G).

In case (b), first assume s = 0. Then Γab◦ϕ contains the matrices [ 1 nd
0 1 ] , [ 1 0

n 1 ]. Since n, nd ∈ Z×p ,[
1 nd
0 1

](nd)−1

=

[
1 1
0 1

]
and

[
1 0
n 1

]n−1

=

[
1 0
1 1

]
.

where (nd)−1, n−1 denote inverses in Zp (see the proof of Proposition 7.1). Thus Γab◦ϕ contains SL2(Z), and
hence is equal to SL2(Zp), and Γab◦ϕ

′
= SL2(Zp)′. For p ≥ 5, this commutator subgroup is the entirety of

SL2(Zp), and for p = 2, 3, this is a subgroup of SL2(Zp) of index 4,3 respectively (Proposition 7.4). Since r = 0,
we must also have ωp = 0, so [Γab◦ϕ : Γϕ] is prime to p. Thus, for any p, we must have Γϕ = SL2(Zp) as desired.
If s ≥ 1, then a similar argument using Proposition 7.1 shows that Γab◦ϕ = Γ1(ps), and again since ωp = 0,
Γϕ = Γab◦ϕ = Γ1(ps) as desired.

In case (c), we will use more results from §7.1, where Γ(pr+s, pr) is denoted Γr+s,r+s,r. Note that in this case,
Γab◦ϕ = Γ(pr+s, pr). By (34), Γ(pr+s, pr)

′
⊂ Γ(p2r+s, p2r), and Γ(pr+s, pr)/Γ(p2r+s, p2r) ∼= (Z/pr)3. In addition,
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Proposition 7.3(a1)-(a2) implies that the Frattini quotient of Γ(pr+s, pr) is F3
p. Applying (34) again, all of this

implies that for any 0 ≤ k ≤ r, the maximal abelian pk-torsion quotient of Γ(pr+s, pr) is (Z/pk)3, with kernel
Γ(pr+s+k, pr+k). Setting k = ωp gives the desired result.

Finally we consider the case where ab◦ϕ does not send x1, x2 to elements of order nd, n respectively. By Gaschütz’
lemma, there exists a ϕ′ such that ab ◦ϕ does, and which is mapped to ϕ in Epiext(Π, G) = Epiext(M,G) by the
action of an element of Out(M). By Corollary 3.23, one can take ϕ′ to lie in the same Out(M, I) ∼= GL2(Ẑ)-orbit
as ϕ. It follows that the corresponding SL2(Ẑ)-stabilizers are conjugate in GL2(Ẑ), and using the decomposition
GL2(Ẑ) =

∏
p GL2(Zp), the SL2(Zp)-stabilizers are conjugate in GL2(Zp), as desired.

Theorems 6.9 and 6.4 imply the following corollary.

Corollary 6.10. Let G be a finite 2-generated metabelian group with exponent e. Suppose Gab ∼= Z/nd× Z/n,
and let ε be the exponent of IOut1(G). Then ε | n, and every component ofM(G)C has congruence level dividing
gcd(e, ndε).

7 Appendix

7.1 Congruence subgroups
In this section we establish some results regarding generators and abelianizations of congruence subgroups of
SL2(Z). Since most congruence subgroups are free, this question is more interesting if we consider it in the
category of congruence subgroups. For example, we will show that for any n ≥ 1, the principal congruence
subgroup Γ(n) := Ker(SL2(Z) → SL2(Z/n)) can be generated by three elements as a congruence subgroup (see
7.1). We will also show that the maximal abelian quotient of Γ(n) with congruence kernel is an extension of
(Z/n)3 by (Z/4)2 (see 7.3).

The group SL2(Z) embeds as a dense subgroup of its pro-congruence completion SL2(Ẑ) =
∏
p SL2(Zp). There is

a bijection between congruence subgroups of SL2(Z) and open subgroups of SL2(Ẑ), the forward direction being
given by taking closures, and the inverse by taking intersections with SL2(Z). If Γ ≤ SL2(Z) is a general finite
index subgroup, then the topological closure of Γ inside SL2(Ẑ) is an open subgroup whose intersection with
SL2(Z) is the minimum congruence subgroup containing Γ, called the congruence closure. The results stated in
the previous paragraph can thus be translated into questions about open subgroups of SL2(Ẑ) =

∏
p SL2(Zp),

which can be studied profitably via the theory of formal groups [Ser06, §IV.6-9]. We briefly recall some of the
results here.

Let p be a prime, and r = (r1, r2, r3) ∈ (Z≥1)3. If k ∈ Z, we write r+k := (r1 +k, r2 +k, r3 +k). In the following
we work in SL2(Zp), and let m := pZp. We write Γr = Γr1,r2,r3 for the subset of SL2(Zp)

Γr = Γr1,r2,r3 :=

{[
1 + a b

c 1 + d

]
∈ SL2(Zp)

∣∣∣ a ∈ mr1 , b ∈ mr2 , c ∈ mr3
}

If k ∈ Z≥1, write Γk := Γk,k,k for the closure Γ(pk) of the principal congruence subgroup Γ(pk) inside SL2(Zp).
Since the determinant is 1, d is uniquely determined by a, b, c:

d = (1 + a)−1(1 + bc)− 1 = −a+ a2 + bc− a3 − abc+ a4 + a2bc+O(d0 ≥ 5) (29)

where O(d0 ≥ 5) denotes a power series in Zp[[a, b, c]] with all terms having total degree ≥ 5. The group
multiplication in SL2(Zp) then defines a 3-dimensional formal group law F = (F1,F2,F3), where each Fi is
a power series in (the coordinates a, b, c of) pairs of matrices X,Y in Γr. Explicitly, if X =

[
1+a b
c 1+d

]
and
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Y =
[

1+a′ b′

c′ 1+d′

]
, we have

(XY )1 = F1(X,Y ) = F1

([
1+a b
c 1+d

]
,
[

1+a′ b′

c′ 1+d′

])
= a+ a′ + aa′ + bc′

(XY )2 = F2(X,Y ) = F2

([
1+a b
c 1+d

]
,
[

1+a′ b′

c′ 1+d′

])
= b+ b′ + ab′ − ba′ + ba′2 + bb′c′ − ba′b′c′ − ba′3 +O(d0 ≥ 5)

(XY )3 = F3(X,Y ) = F3

([
1+a b
c 1+d

]
,
[

1+a′ b′

c′ 1+d′

])
= c+ c′ + ca′ − ac′ + a2c′ + bcc′ − abcc′ − a3c′ +O(d0 ≥ 5)

(30)
where for F2,F3 we have used the relation (29).18 It will be useful to note that in (XY )2, every term of degree
≥ 3 is divisible by b, and in (XY )3, every term of degree ≥ 3 is divisible by c′. The inverse X−1 is given by

(X−1)1 = −a+ a2 + bc− abc− a3 + a2bc+ a4 +O(d0 ≥ 5)
(X−1)2 = −b
(X−1)3 = −c

(31)

where every term of degree ≥ 2 is divisible either by a2 or bc. It follows from these formulas that for r =
(r1, r2, r3) ∈ Z≥1, Γr is a subgroup of SL2(Zp) if and only if r2 + r3 ≥ r1. A triple r satisfying this condition
will be called admissible. In this case, F defines a group structure on the set mr := mr1 ×mr2 ×mr3 . Let G(mr)
be the group with underlying set mr and group operation given by F. We will henceforth pass freely between Γr
and G(mr) via the isomorphism

[
1+a b
c 1+d

]
7→ (a, b, c).

Using (30) and (31), the conjugate XYX−1 is given by

(XYX−1)1 = a′ + bc′ − cb′ + 2bca′ − acb′ − abc′ − bcb′c′ + b2cc′ − a′2bc+ a2bc′ +O(d0 ≥ 5)
(XYX−1)2 = b′ − 2ba′ + 2ab′ + bb′c′ + ba′2 − b2c′ − 2aba′ + a2b′ − ba′b′c′ − ba′3 + abb′c′ + aba′2 +O(d0 ≥ 5)
(XYX−1)3 = c′ + 2a′c− 2ac′ − cb′c′ + 2bcc′ − ca′2 − c2b′ − 2aca′ + 3a2c′ + ca′b′c′ + ca′3 + 2bc2a′

+ acb′c′ − 4abcc′ + aca′2 +O(d0 ≥ 5)
(32)

Similarly, the commutator is then given by

[X,Y ]1 = bc′ − cb′ + ca′b′ + ba′c′ + 2bca′ − 2ab′c′ − acb′ − abc′ − cb′2c′ − bcb′c′ + b2c′2 + b2cc′ − ca′2b′
− 3bca′2 + aca′b′ + 3aba′c′ − a2b′c′ + a2bc′ +O(d0 ≥ 5)

[X,Y ]2 = 2ab′ − 2ba′ + cb′2 − ba′2 − b2c′ + 2aa′b′ − 2aba′ + a2b′ − 2bca′b′ − b2a′c′ + acb′2 + 2abb′c′

− aba′2 + a2a′b′ +O(d0 ≥ 5)
[X,Y ]3 = 2ca′ − 2ac′ + bc′2 − 2cb′c′ + 2bcc′ − 3ca′2 − c2b′ + 2aa′c′ − 2aca′ + 3a2c′ + 4ca′b′c′ + 4ca′3

+ c2a′b′ + 2bc2a′ − 2ab′c′2 − abc′2 − 2aa′2c′ − 4abcc′ + 3aca′2 − 3a2a′c′ + 2a2ca′ − 4a3c′ +O(d0 ≥ 5)
(33)

The isomorphisms Γr ∼= G(mr) carries the filtration Γr ⊃ Γr+1 ⊃ · · · to the filtration G(mr) ⊃ G(mr+1) ⊃ · · ·
given by the canonical containments mk ⊃ mk+1 ⊃ · · · . From the multiplication formulas (30), we find that if
m := min{r1, r2, r3}, then

Γr/Γr+m ∼= G(mr)/G(mr+m) ∼= (Z/pm)3 (34)

Proposition 7.1. Let e ∈ Z≥1, and I = [ 1 0
0 1 ]. Let Γ ≤ SL2(Z) be a congruence subgroup which contains I+eXi

for i = 1, 2, 3, where

X1 :=

[
0 1
0 0

]
, X2 :=

[
0 0
1 0

]
, X3 :=

[
1 −1
1 −1

]
.

Then Γ contains the principal congruence subgroup Γ(e). In other words, the group 〈I + eXi〉i=1,2,3 ≤ SL2(Z) is
dense inside the closure of Γ(e) in SL2(Ẑ).

Proof. Let Γ be the closure of Γ inside SL2(Zp). We wish to show that for every p - e, we have Γ = SL2(Zp),
and for every p | e with ordp(e) = r, we have Γ ⊃ Γ(pr). First we note that for any i = 1, 2, 3 and n ∈ Z, we
have I + nXi = (I +Xi)

n ∈ SL2(Z). More generally, for any prime p, the closed subgroup of SL2(Zp) generated
18The equations (30),(31),(32),(33) were computed with the aid of Wolfram Mathematica.
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by I +Xi is isomorphic to the additive group of Zp as topological groups, and hence for any a, b ∈ Zp, we have
(I + aXi)

b = I + abXi in SL2(Zp).

Suppose p - e. Let e−1 denote the inverse in Zp. Since I + eXi ∈ Γp, we have (I + eXi)
e−1

= I +Xi ∈ Γ. Since
SL2(Z) is generated by the I +Xi’s and is dense in SL2(Zp), this shows that Γ = SL2(Zp) for p - e.

Now suppose e = upr where p - u. Since Γ ≤ SL2(Zp) is an open subgroup, Γ ⊃ Γ(ps) for some s, where we may
assume s − 1 ≥ r. Then, Γ(ps−1)/Γ(ps) is isomorphic to G(ps−1)/G(ps) which from (34) is isomorphic to the
additive group F3

p. Thus, we have an injective homomorphism of Fp-vector spaces

Γ ∩ Γ(ps−1)

Γ(ps)
⊂ Γ(ps−1)

Γ(ps)

(
∼=
G(ps−1)

G(ps)
∼= F3

p

)
. (35)

Since I+uprXi ∈ Γ, as above we have (I+uprXi)
u−1ps−1−r

= I+ps−1Xi ∈ Γ. We clearly also have I+ps−1Xi ∈
Γ∩Γ(ps−1) (for i = 1, 2, 3). Since their images inG(ps−1)/G(ps) ∼= F3

p are (0, 1, 0), (0, 0, 1), (1,−1, 1), the inclusion
(35) is an equality, so Γ ⊃ Γ(ps−1). By induction, we find that Γ ⊃ Γ(pr), as desired.

Corollary 7.2. Let G be a finite 2-generated group of exponent e. Let F be a free group of rank 2. Choose an
isomorphism Fab ∼= Z2, which induces an isomorphism f : Out+(F) ∼= SL2(Z), and yields an action of SL2(Z)
on Epiext(F, G). Let ϕ ∈ Epiext(F, G). If Γϕ := StabSL2(Z)(ϕ) is congruence, then Γϕ ⊃ Γ(e).

Proof. Let x1, x2 be generators of F . In the notation of 7.1, the matrix I + eX1 = [ 1 e
0 1 ] is represented by the

automorphism of F sending (x1, x2) 7→ (x1, x
e
1x2). Since G has exponent e, this automorphism clearly fixes ϕ,

and hence I + eX1 ∈ Γϕ. Since this does not depend on the choice of generators x1, x2, it follows that Γϕ must
also contain all conjugates of I + eX1. In particular, it must contain I + eX2, I + eX3. Proposition 7.1 then
implies that Γϕ ⊃ Γ(e) as desired.

Proposition 7.3. Let p be a prime, and r = (r1, r2, r3) an admissible triple. The Frattini subgroup Φ(Γr) of Γr
is as follows:

(a1) If p is odd, then Φ(Γr) = Γr+1 and Γr/Φ(Γr) ∼= F3
p.

(a2) If p = 2 and either r1 ≥ 2 or r = (1, 1, 1), then Φ(Γr) = Γr+1 and Γr/Φ(Γr) ∼= F3
2.

(a3) If p = 2, r1 = 1, and r 6= (1, 1, 1), then Φ(Γr) = Γ3,r2+1,r3+1, and Γr/Φ(Γr) ∼= F4
2.

Let n ≥ 1 be an integer. Recall that Γn := Γn,n,n ≤ SL2(Zp) is the closure of the principal congruence subgroup
Γ(pn). Then the derived subgroup Γ′n and abelianization Γab

n are as follows:

(b1) If p is odd, then Γ′n = Γ2n, and Γab
n
∼= (Z/pn)3.

(b2) If p = 2 and n ≥ 2, then Γ′n = Γ2n,2n+1,2n+1, and Γab
n
∼= Z/2n × Z/2n+1 × Z/2n+1.

(b3) If p = 2, and n = 1, then Γ3,4,4 ⊂ Γ′1 ⊂ Γ2,3,3 and Γ′1/Γ3,4,4
∼= F2 generated by the image of [ 5 8

8 13 ], and the
abelianization is Γab

1
∼= Z/2× Z/8× Z/8.

Proof. Inside a pro-p group G, the Frattini subgroup is Φ(G) = GpG′ and the Frattini quotient G/Φ(G) is the
maximal p-elementary abelian quotient with rank equal to the minimum size d(G) amongst generating sets of
G. We also refer to d(G) as the rank of G. It follows that Φ(G) can be characterized as the unique normal
subgroup satisfying G/Φ(G) ∼= Fd(G)

p .

We first consider the cases (a1) and (a2). We claim that Γr has rank ≤ 3. If r = (k, k, k) for some integer k ≥ 1,
then this follows from 7.1. In the general case, for integers k ≥ 1, let

Y1,k :=

[
1 + pk 0

0 (1 + pk)−1

]
, Y2,k :=

[
1 pk

0 1

]
, Y3,k :=

[
1 0
pk 1

]
and let H ≤ Γr be the (closed) subgroup generated by Y1,r1 , Y2,r2 , Y3,r3 . As long as (p, r1) 6= (2, 1), the multi-
plicative group 1 + mr1 is pro-cyclic, generated by 1 + pr1 , so for any s1 ≥ r1, H contains Y1,s1 . Similarly, since
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Y2,r2 , Y3,r3 generate additive groups, for any s2 ≥ r2, s3 ≥ r3, H also contains Y2,s2 , Y3,s3 . Thus, for any k ≥ 0,
the map

fk : H ∩ Γr+k ↪→ Γr+k � Γr+k/Γr+k+1
∼= G(mr+k)/G(mr+k+1) ∼= F3

p

sends {Yi,ri+k}i=1,2,3 to the canonical basis, and hence fk is surjective. This shows that for any open subgroup
U ≤ Γr, 〈H,U〉 = Γr; in particular, the only open subgroup containing H is Γr. Since closed subgroups are
intersections of open subgroups [RZ10, Prop 2.1.4(d)], it follows that H = Γr.

Thus we have shown that in cases (a1),(a2), Γr has rank ≤ 3, and since Γr/Γr+1
∼= F3

p, its rank is 3, so its
Frattini quotient is F3

p. Since Γr/Γr+1
∼= F3

p we must have Φ(Γr) = Γr+1; this establishes (a1),(a2).

For case (a3), we have r1 = 1 and r2 + r3 ≥ 3. We know from (a2) that Γ2,r2,r3 ≤ SL2(Z2) has rank ≤ 3. Since
Γ1,r2,r3/Γ2,r2,r3 is cyclic, Γ1,r2,r3 has rank ≤ 4. It follows from the commutator formulas (33) that Γ′1,r2,r3 ⊂
Γ3,r2+1,r3+1, so that the quotient A := Γ1,r2,r3/Γ3,r2+1,r3+1 is abelian of order 16 and contains the subgroup
B := Γ2,r2,r3/Γ3,r2+1,r3+1

∼= F3
2. On the other hand, since r2 + r3 ≥ 3, one checks using the multiplication

formulas (30) that
[

1+2 2r2

2r3 (1+2)−1(1+2r2+r3 )

]
∈ A−B has order 2 in A, and hence A ∼= F4

2 and Γ1,r2,r3 has rank 4.
It follows that the Frattini quotient of Γr = Γ1,r2,r3 is F4

2, and hence we must have Φ(Γr) = Γ3,r2+1,r3+1.

Next we address (b1),(b2),(b3). Writing (a, b, c) for the matrix
[
a b
c d

]
∈ SL2(Zp), the formulas for the commutator

(33) show that Γ′n,n,n ⊂ Γ2n,2n,2n, and moreover

Z1 := [(pn, 0, 0), (0, pn, 0)] ≡ (0, 2p2n + p3n, 0) mod m5n

Z2 := [(pn, 0, 0), (0, 0, pn)] ≡ (0, 0,−2p2n + 3p3n − 4p4n) mod m5n

Z3 := [(0, pn, 0), (0, 0, pn)] ≡ (p2n + p4n,−p3n, p3n) mod m5n
(36)

If p is odd, by (a1) these commutators generates the Frattini quotient of Γ2n and hence they generate Γ2n, so
Γ′n = Γ2n, with quotient Γab

n
∼= (Z/pn)3 by (34); this proves (b1). If p = 2, then the commutator formulas show

that Γ′n ⊂ Γ2n,2n+1,2n+1. If n ≥ 2, then by (a2) the commutators Z1, Z2, Z3 again generates the Frattini quotient
of Γ2n,2n+1,2n+1, and hence Γ′n = Γ2n,2n+1,2n+1. By (a2), the abelianization Γab

n is an abelian 2-group of rank 3,
which by (34) is an extension of Γn/Γn,n+1,n+1

∼= (Z/2)2 by Γn,n+1,n+1/Γ2n,2n+1,2n+1
∼= (Z/2n)3, so it must be

Z/2n × Z/2n+1 × Z/2n+1. This proves (b2). Now suppose n = 1. The commutator [·, ·] induces an alternating
bilinear map of F2-vector spaces

Γ1/Γ2 × Γ1/Γ2 −→ Γ2,3,3/Γ3,4,4
∼= F3

2

whose image, by (36), is the span of (1,−1, 1) ∈ F3
2. This shows that Γ′1/Γ3,4,4 has order 2, generated by

the image of [ 5 8
8 13 ]. It remains to show that Γ′1 ⊃ Γ3,4,4. The commutators Z1, Z2 map to (0, 1, 0), (0, 0, 1)

in Γ3,4,4/Γ4,5,5
∼= F3

2, and Z2
3 ≡ (23, 0, 0) mod Γ4,5,5 lies in Γ3,4,4 and maps to (1, 0, 0) in Γ3,4,4/Γ4,5,5

∼=
F3

2. It follows that Z1, Z2, Z
2
3 generate the Frattini quotient of Γ3,4,4, and hence they generate Γ3,4,4. The

abelianization Γab
1 is by (a3) a rank 3 abelian 2-group of order 27, so there are two possibilities: Z/4×Z/4×Z/8

or Z/2×Z/8×Z/8. Note that working modulo 25, by (30), (0, 2, 0)n ≡ (0, 2n, 0) and (0, 0, 2)n ≡ (0, 0, 2n). Since
(0, 2, 0)4 ≡ (0, 8, 0) /∈ Γ′1 and (0, 0, 2)4 ≡ (0, 0, 8) /∈ Γ′1, the images of (0, 2, 0), (0, 0, 2) in Γab generate subgroups
of order 8. Since (0, 8, 0) − (0, 0, 8) ≡ (0, 8,−8) /∈ Γ′1, we find that (0, 2, 0), (0, 0, 2) generate order 8 subgroups
with trivial intersection. Thus the first possibility is ruled out, so Γab

1
∼= Z/2× Z/8× Z/8; this proves (b3).

Proposition 7.4. For p ≥ 5, SL2(Zp)′ = SL2(Zp). For p = 2, 3, we have SL2(Z2)ab ∼= Z/4, and SL2(Z3)ab ∼=
Z/3. Finally, SL2(Ẑ)′ =

∏
p SL2(Zp)′.

Proof. One can algorithmically check that SL2(Z)′ is a normal congruence subgroup of SL2(Z) of index 12 and
level 12, so SL2(Z)′ ⊃ Γ(12). For p > 3, as in the proof of Proposition 7.1, the images of [ 1 12

0 1 ] , [ 1 0
12 1 ] ∈ Γ(12)

generate SL2(Zp), so SL2(Z)′ is dense in SL2(Zp). It follows that SL2(Zp)′ = SL2(Zp) for p > 3. For p = 3, from
Proposition 7.3 we know SL2(Z3)′ ⊃ Γ(3)

′
= Γ(9), so SL2(Z3)ab = SL2(Z/9)ab which by an explicit computation

is ∼= Z/3. For p = 2, we similarly know SL2(Z2)′ ⊃ Γ(2)
′
⊃ Γ(16), so SL2(Z2)ab = SL2(Z/16)ab which by an

explicit computation is ∼= Z/4.

Finally, we have SL2(Ẑ)′ ≤
∏
p SL2(Zp)′, where SL2(Ẑ)′ can be identified with the closure of SL2(Z)′ inside

SL2(Ẑ). Since both subgroups have index 12 in SL2(Ẑ), the inequality must be an equality.
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7.2 Remarks on profinite homology and cohomology
♠♠♠ NOTE: [Should either check the final theorem, or remove this section]

LetG be a profinite group. LetPMod(Ẑ[[G]]) denote the category of profinite Ẑ[[G]]-modules, and letDMod(Ẑ[[G]])

denote the category of discrete Ẑ[[G]]-modules (see [RZ10, §5.1]). The completed tensor product −⊗̂Ẑ[[G]] Ẑ de-

fines a right-exact functor from PMod(Ẑ[[G]]) to itself. This category has enough projectives, and so we define
TorẐ[[G]]

n (−, Ẑ) to be the left derived functors of −⊗̂Ẑ[[G]] Ẑ, where Ẑ is given the trivial G-action. For a profinite

Ẑ[[G]]-module M , the nth homology group of G with coefficients in M is the profinite group

Hn(G,M) := TorẐ[[G]]
n (M, Ẑ) [RZ10, §6.3].

In particular, we have H0(G,M) = MG, where MG := M/IGM is the module of coinvariants.

If M is a discrete Ẑ[[G]]-module, then HomẐ[[G]](Ẑ,−) is a left-exact functor from DMod(Ẑ[[G]]) to itself. This

category has enough injectives, and hence we may define ExtnẐ[[G]]
(Ẑ,−) to be the right derived functors of

HomẐ[[G]](Ẑ,−). For a discrete G-module M , its nth cohomology group of G with coefficients in M is

Hn(G,M) := ExtnẐ[[G]]
(Ẑ,M) [RZ10, §6.2].

Cohomology with profinite coefficients is more subtle; one difficulty is that the category PMod(Ẑ[[G]]) may
not have enough injectives. If M is profinite, one approach is to consider Tate’s continuous cohomology
Hn

cont(G,M) [Tat76, §2], defined as the cohomology of the complex of continuous cochains. Viewed as a functor
from PMod(Ẑ[[G]]) to Ab, the groups Hn

cont(G,M) define a cohomological δ-functor19, but it is unclear if it is
universal in general.

A more sophiscated approach is taken in [BCC16]. Let IP(Ẑ[[G]]) (resp. PD(Ẑ[[G]])) denote the categories of
ind-profinite (resp. pro-discrete) Ẑ[[G]]-modules20. These categories are Pontryagin-dual, and enough projectives
(resp. injectives). However these categories are not abelian - they are only quasi-abelian, and hence derived
functors on them take values in the heart of an appropriate t-structure on the derived category. For an arbitrary
profinite group G, deriving HomẐ[[G]](Ẑ,−) (see [BCC16, §6]) yields cohomology functors

Hn(G,−) : RH(PD(Ẑ[[G]])) −→ RH(PD(Ẑ)) [BCC16, §7].

Here, for a quasi-abelian category E , RH(E) denotes the “right heart” of the derived category D(E). This is an
abelian full subcategory which contains E as a coreflexive full subcategory. In particular we may compute, for
any profinite Ẑ[[G]]-module M , the cohomology object Hn(G,M) ∈ RH(PD(Ẑ)) such that if

0 −→ L
f−→M

g−→ N −→ 0

is an exact sequence in PMod(Ẑ[[G]]), then we have the usual long exact sequence in cohomology. However,
it is not clear if H0(G,M) = MG (See [BCC16, Remarks 6.2, 6.11]), or if H0(G,M) lands in the subcategory
PD(Ẑ). It turns out that a sufficient condition for this is that G is of type FP∞:

Definition 7.5. A profinite group G is of type FPn (n ≥ 0) if there exists an exact sequence of profinite
Ẑ[[G]]-modules

Pn −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ Ẑ −→ 0

where Ẑ has trivial G-action, and each Pi is finitely generated and projective in PMod(Ẑ[[G]]). The group G is
of type FP∞ if it is of type FPn for every n ≥ 0.

19This follows from [Tat76, §2] upon noting that surjections of profinite groups admit a continuous set-theoretic section [RZ10,
Proposition 2.2.2]

20By definition not all colimits/limits are allowed - the indexing poset must be a subset of N. In particular any profinite Ẑ[[G]]-
module is ind-profinite, and any second-countable profinite Ẑ[[G]]-module is pro-discrete. See [BCC16, §1-2].
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Theorem 7.6 (Cook, [CC16]). Any virtually poly pro-cyclic group is of type FP∞. In particular this includes
all profinite abelian groups.

Theorem 7.7 ( [BCC16]). If G is a profinite group of type FP∞, then H0(G,M) = MG, Hn(G,M) agrees with
Tate’s continuous cohomology Hn

cont(G,M) for all n and all M ∈ PD(Ẑ[[G]]). Moreover Hn(G,−) is a universal
δ-functor.

Proof. That H0(G,M) = MG and agrees with Tate’s continuous cohomology follows from [BCC16, Proposition
8.2, Corollary 8.3, 8.4]. The fact that Hn(G,−) is a universal δ-functor is a bit more difficult. It follows from
private communication with the second author of the paper, which I have not fully checked.
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