(10) 1. Suppose that the vectors $v_{1}, v_{2}, \ldots, v_{k}$ span \mathbb{F}^{n}. (\mathbb{F} is a field.)
(a) Prove that $k \geq n$.
(b) Prove that if $k=n$, then $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a basis of \mathbb{F}^{n}.
(5) 2. Let V and W be vector spaces and let $T: V \rightarrow W$ be a linear transformation. Suppose that the null space of T is $\{0\}$ and suppose that $\{u, v, w\}$ is a linearly independent subset of V. Show that $\{T(u), T(v), T(w)\}$ is a linearly independent subset of W.
(5) \quad. Let V and W be vector spaces and let $T: V \rightarrow W$ be a linear transformation. Assume that T is invertible, that is, that T is one-to-one and onto. Prove that $T^{-1}: W \rightarrow V$ is linear.
(20) 4. NOTE: This problem has six parts. Parts (a)-(c) are on this page and parts (d)-(f) are on the following pages.

Let $\beta=\left\{1, x, x^{2}\right\}$ be the standard ordered basis of $P_{2}(\mathbb{R})$.
Let $\beta^{\prime}=\left\{f_{1}(x), f_{2}(x), f_{3}(x)\right\}$, where $f_{1}(x)=x+2 x^{2}, f_{2}(x)=1+x^{2}$ and $f_{3}(x)=1$.
Note that β and β^{\prime} will be used throughout this problem.
(a) Show that β^{\prime} is a basis of $P_{2}(\mathbb{R})$.
(b) Find the change-of-coordinate matrix Q that changes β^{\prime}-coordinates into β-coordinates.
(c) Find Q^{-1}.

CONTINUATION OF PROBLEM 4

(d) Let $g(x)=5+x-3 x^{2}$.

Find the column vector $[g(x)]_{\beta}$, the coordinate vector of $g(x)$ with respect to β. Also find the coordinate vector $[g(x)]_{\beta^{\prime}}$ of $g(x)$ with respect to β^{\prime}.

CONTINUATION OF PROBLEM 4

(e) Let T be the linear operator on $P_{2}(\mathbb{R})$ defined by

$$
T\left(a+b x+c x^{2}\right)=(2 a+c)+b x+(a+b) x^{2} .
$$

Find the matrix $[T]_{\beta}$ of T with respect to β.
Also find the matrix $[T]_{\beta^{\prime}}$ of T with respect to β^{\prime}.

CONTINUATION OF PROBLEM 4

(f) Find the coordinate vector $[T(g(x))]_{\beta}$ of $T(g(x))$ with respect to β.

Also find the coordinate vector $[T(g(x))]_{\beta^{\prime}}$ of $T(g(x))$ with respect to β^{\prime}.
(Recall that $g(x)$ was defined in Part (d).)
5. NOTE: This problem has five parts. Parts (c), (d) and (e) are on the following pages.

Consider the real 3×3 matrix

$$
A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1 \\
0 & -1 & 1
\end{array}\right)
$$

(a) Find the characteristic polynomial of A.
(b) Find all of the eigenvalues of A.

CONTINUATION OF PROBLEM 5

(c) Find all of the eigenvectors of A corresponding to each eigenvalue.
(d) Write down the Jordan canonical form J of A.

CONTINUATION OF PROBLEM 5

(e) Find an invertible matrix Q such that $Q^{-1} A Q=J$. (You do not have to calculate Q^{-1}.)
(10) 6. Let $a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{F}$ and let A be the $n \times n$ matrix

$$
A=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & a_{0} \\
-1 & 0 & 0 & \cdots & 0 & a_{1} \\
0 & -1 & 0 & \cdots & 0 & a_{2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & a_{n-1}
\end{array}\right)
$$

Show that $\operatorname{det}\left(A+t I_{n}\right)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$.
(Hints: Use mathematical induction on n. Use cofactor expansion along the first row.)
7. Consider the inner product space $V=P_{1}(\mathbb{R})$ with the inner product $\langle f(x), g(x)\rangle=\int_{0}^{1} f(t) g(t) d t$.
(a) Use the Gram-Schmidt process to find an orthogonal basis of V starting from the standard ordered basis $\{1, x\}$.
(b) Normalize your basis elements to obtain an orthonormal basis β for V.

NOTE: Part (c) is on the next page.

CONTINUATION OF PROBLEM 7

(c) Find the Fourier coefficients of $h(x)=1-2 x$ with respect to your orthonormal basis β.
(20) 8. Consider the complex 3×3 matrix

$$
A=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 2 i
\end{array}\right)
$$

(a) Is A self-adjoint? Justify your answer.
(b) Is A normal? Justify your answer.

NOTE: Part (c) is on the next page.

CONTINUATION OF PROBLEM 8

(c) Find a unitary matrix P and a diagonal matrix D such that $P^{*} A P=D$.

MATH 350:02 FINAL EXAM

May 11, 2022
NAME (please print): \qquad SIGNATURE: \qquad

Do all 8 problems.

Note that some of the problems have several parts.

Show all your work and justify your answers.

Good luck!

Problem number	Possible points	Points earned (out of 100):
1	10	
2	5	
3	5	
4	20	
5	15	
6	10	
7	15	
8	20	
Total points earned:		

