(20) 1. Let $v_{1}, v_{2}, \ldots, v_{k}$ be linearly independent vectors in \mathbb{F}^{n}.
(a) Prove that $k \leq n$.
(b) Prove that if $k=n$, then $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a basis of \mathbb{F}^{n}.
2. Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right)$ and take $\mathbb{F}=\mathbb{R}$.
(a) Find the eigenvalues of A and find an ordered basis of \mathbb{R}^{2} consisting of eigenvectors of A.
(b) Write down an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$. (You do not have to calculate Q^{-1}.)
(20) 3. Let T be a linear operator on a finite-dimensional vector space V over \mathbb{F}.
(a) Prove that T is invertible if and only if 0 is not an eigenvalue of T.
(b) Prove that if T is invertible, then a scalar $\lambda \in \mathbb{F}$ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1}.
(20) 4. Let $V=P_{2}(\mathbb{R})$, define the linear operator $T: V \rightarrow V$ by $T(f(x))=f^{\prime}(x)-f(1)$ for $f(x) \in V$, and let W be the T-cyclic subspace of V generated by the polynomial $x^{2}-1 \in V$.
(a) Find an ordered basis for W.
(b) Find the characteristic polynomial of the restriction T_{W} of T to W.
(20) 5. NOTE: PARTS (B) AND (C) OF THIS PROBLEM ARE ON THE NEXT PAGE.

Let $A=\left(\begin{array}{cc}0 & -4 \\ 1 & 4\end{array}\right)$ in $M_{2 \times 2}(\mathbb{R})$.
(a) Find an eigenvector for A.

CONTINUATION FROM THE PREVIOUS PAGE

(b) Use your answer to (a) to find a Jordan canonical basis for the linear operator L_{A}. In other words, find an ordered basis of \mathbb{R}^{2} which is a cycle of generalized eigenvectors of L_{A}.
(c) Write down the Jordan canonical form J of A and an invertible matrix Q such that $Q^{-1} A Q=J$. (You do not have to calculate Q^{-1}.)

MATH 350:02, EXAM 2

April 13, 2022
NAME (please print): \qquad
SIGNATURE: \qquad

Do all 5 problems.

Show all your work and justify your answers.

Problem number	Possible points	Points earned (out of 100):
1	20	
2	20	
3	20	
4	20	
5	20	
Total points earned:		

