1. (a) Let W be the subset of \mathbb{R}^{2} consisting of all the vectors $\binom{a}{b}$ such that $a=3 b$, that is, $W=\left\{\left.\binom{a}{b} \in \mathbb{R}^{2} \right\rvert\, a=3 b\right\}$. Is W a subspace of \mathbb{R}^{2} ? Justify your answer.
(b) Let W be the subset of $P_{2}(\mathbb{R})$ consisting of the polynomials $f(x)$ of the form $a_{0}+a_{2} x^{2}$ where $a_{0}, a_{2} \in \mathbb{R}$ and $a_{2}=a_{0}+1$. Is W a subspace of $P_{2}(\mathbb{R})$? Justify your answer.
(15) 2. Find a basis for the subspace W of $P_{4}(\mathbb{R})$ spanned by $\left\{x^{2}+1,2 x,(x+1)^{2}\right\}$. You can use any (valid) method but you must fully justify your answer.
2. Let V and W be vector spaces over a field \mathbb{F} and let $T: V \rightarrow W$ be a linear transformation.
(a) Prove that $T\left(0_{V}\right)=0_{W}$, where 0_{V} and 0_{W} are the zero vectors in V and W, respectively. (Be sure to justify your steps.)
(b) Define the null space $N(T)$ of T.
(c) Prove that T is one-to-one if and only if $N(T)=\left\{0_{V}\right\}$.
(15) 4. Let V be a vector space over a field \mathbb{F} and let $u_{1}, u_{2}, \ldots, u_{n}$ be distinct vectors in V Assume that each vector in V can be uniquely expressed as a linear combination of vectors in the set $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Prove that β is a basis for V.
(15) \quad 5. Define the linear transformation $T: P_{3}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ by

$$
T(f(x))=\left(\begin{array}{c}
f(0) \\
f(1) \\
f(0)+f(1)
\end{array}\right)
$$

(a) Find a basis for the range $R(T)$ of T.
(b) Use your result to determine the rank of T.
(c) Use the Dimension Theorem to determine the nullity of T.
6. Let T be the linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} defined by

$$
\begin{equation*}
T\binom{a_{1}}{a_{2}}=\binom{a_{1}-a_{2}}{a_{1}+2 a_{2}} \tag{15}
\end{equation*}
$$

Let $\beta=\left\{\binom{1}{0},\binom{0}{1}\right\}$ be the standard ordered basis of \mathbb{R}^{2}, and also consider the ordered basis $\beta^{\prime}=\left\{\binom{1}{0},\binom{1}{1}\right\}$ of \mathbb{R}^{2}.
(a) Write down a matrix A such that $T=L_{A}$. (L_{A} means "left multiplication by $\left.A . "\right)$
(b) Find the matrix $[T]_{\beta}$ of T with respect to the standard ordered basis β. (Note that $[T]_{\beta}$ can also be written as $[T]_{\beta}^{\beta}$.) You must justify your answer.
(c) Find the matrix $[T]_{\beta}^{\beta^{\prime}}$ of T with respect to the ordered bases β and β^{\prime}. As usual, justify your answer.
(10) 7. Let \mathbb{F} be a field.
(a) Are the vector spaces \mathbb{F}^{6} and $M_{2 \times 3}(\mathbb{F})$ isomorphic? Justify your answer briefly.
(b) Are the vector spaces $P_{5}(\mathbb{F})$ and \mathbb{F}^{5} isomorphic? Justify your answer briefly.

$$
\text { MATH 350:02, EXAM } 1
$$

February 23, 2022
NAME (please print): \qquad
SIGNATURE: \qquad

Do all 7 problems.

Show all your work and justify your answers.

Problem number	Possible points	Points earned (out of 100):
1	15	
2	15	
3	15	
4	15	
5	15	
6	15	
7	10	
Total points earned:		

