MATH 350 Linear Algebra Homework 9

Instructor: Will Chen

December 2, 2022

Problems

Book Problems (2 points each, 20 points total)

- Section 7.1, Problems 2a, 2c, 3b, 5, 12
- Section 7.2, Problem 3a, 3b, 3c, 3d, 3e

Additional Problems (10 points total)
A1. Let V be a finite dimensional vector space. Suppose V_{1}, \ldots, V_{k} are subspaces of V satisfying the following 2 properties
(A) For every $j \in\{1, \ldots, k\}, V_{j} \cap \sum_{i \neq j} V_{i}=0 .{ }^{1}$
(B) $V=\sum_{i=1}^{k} V_{i}$. In other words, every $v \in V$ can be written as a sum $v=v_{1}+\cdots+v_{k}$ with each $v_{i} \in V_{i}$. In this case, we say that V is a direct sum of V_{1}, \ldots, V_{k}, and we write

$$
V=\bigoplus_{i=1}^{k} V_{i}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{k}
$$

Prove the following:
(a) (2 points) The decomposition $v=v_{1}+\cdots+v_{k}$ is unique. In other words, show that if $v=v_{1}^{\prime}+\cdots+v_{k}^{\prime}$ is another decomposition (with $v_{i}^{\prime} \in V_{i}$), then $v_{i}=v_{i}^{\prime}$ for each i. Note that the case $k=2$ was done in homework 2 (§1.3, Problem 30).
(b) (2 points) Show that if $\beta_{1}, \ldots, \beta_{k}$ are arbitrary bases for V_{1}, \ldots, V_{k} respectively, then $\beta_{1} \cup \beta_{2} \cup \cdots \cup \beta_{k}$ is a basis for V.

Remark. In the original (mistaken) formulation of the problem, property (A) required $V_{i} \cap V_{j}=0$ for every $i \neq j$. However, this is not enough to guarantee the statements in (a) and (b). Food for thought: Can you find an example of V, V_{1}, \ldots, V_{k} such that the statements in (a) and (b) don't hold? Note that k will necessarily have to be ≥ 3. More food for thought: how can we see that for a linear operator $T: V \rightarrow V$, V is a direct sum of generalized eigenspaces? We know that $K_{\lambda} \cap K_{\mu}=0$ for any $\lambda \neq \mu$, but this is not enough to ensure that it is a direct sum. It turns out property (A) is also a consequence of the statement in (a), and the statement in (a) was proven in Theorem 7.3 (in $\S 7.1$ of the book). The proof is easy in the $k=2$ case (which we illustrated in class), but for $k \geq 3$, the proof uses some additional tools which are available in our setting.
A2. For problems A2 and A3, it may help (though not strictly necessary) to take a look at appendix E. Let $f(t)=(t-3)^{2}$ and $g(t)=(t-1)$. In the language of appendix $\mathrm{E}, f(t), g(t)$ are relatively prime polynomials.

[^0](a) (1 point) Find polynomials $q_{1}(t), r_{1}(t)$ with $\operatorname{deg} r_{1}(t)<\operatorname{deg} g(t)=1$ such that
$$
f(t)=q_{1}(t) g(t)+r_{1}(t)
$$
(Hint: $r_{1}(t)$ should be a nonzero constant)
(b) (1 point) Using the relation $r_{1}(t)=f(t)-q_{1}(t) g(t)$, find polynomials $c(t), d(t)$ such that
$$
c(t) f(t)+d(t) g(t)=1
$$
(Hint: some fractions should appear)
(c) (1 point) Let $T: V \rightarrow V$ be a linear operator on a vector space V. Verify by expanding the polynomials that
$$
c(T) f(T)+d(T) g(T)=I
$$
where I denotes the identity operator on V.
A3. Let $f(t)=(t-1)^{3}$ and $g(t)=(t-2)(t-3)$. In the language of appendix $\mathrm{E}, f(t), g(t)$ are relatively prime polynomials.
(a) (1 point) Find polynomials $q_{1}(t), r_{1}(t)$ with $\operatorname{deg} r_{1}(t)<\operatorname{deg} g(t)=2$ such that
$$
f(t)=q_{1}(t) g(t)+r_{1}(t)
$$
(Hint: $r_{1}(t)$ should be degree 1)
(b) (1 point) Find polynomials $q_{2}(t), r_{2}(t)$ with $\operatorname{deg} r_{2}(t)<\operatorname{deg} r_{1}(t)=1$ such that
$$
g(t)=q_{2}(t) r_{1}(t)+r_{2}(t)
$$
(Hint: $r_{2}(t)$ should be nonzero and degree 0 , i.e., it should be a nonzero constant. Some fractions will appear in the coefficients.)
(c) (1 point) Note that $r_{1}(t)=f(t)-q_{1}(t) g(t)$ (i.e., $r_{1}(t)$ is a "polynomial linear combination of $f(t), g(t)$ "). Similarly, $r_{2}(t)=g(t)-q_{2}(t) r_{1}(t)$. Use this to find polynomials $c(t), d(t)$ such that
$$
c(t) f(t)+d(t) g(t)=1
$$

[^0]: ${ }^{1}$ Here, for an example, if $k=4$ and $j=2$, then $\sum_{i \neq 2} V_{i}=V_{1}+V_{3}+V_{4}=\operatorname{Span} V_{1} \cup V_{3} \cup V_{4}$.

