MATH 350 Linear Algebra Homework 9

Instructor: Will Chen

December 2, 2022

Problems

Book Problems (2 points each, 20 points total)

- Section 7.1, Problems 2a, 2c, 3b, 5, 12
- Section 7.2, Problem 3a, 3b, 3c, 3d, 3e

Additional Problems (10 points total)

- A1. Let V be a finite dimensional vector space. Suppose V_1, \ldots, V_k are subspaces of V satisfying the following 2 properties
 - (A) For every $j \in \{1, ..., k\}, V_j \cap \sum_{i \neq j} V_i = 0.^{-1}$
 - (B) $V = \sum_{i=1}^{k} V_i$. In other words, every $v \in V$ can be written as a sum $v = v_1 + \dots + v_k$ with each $v_i \in V_i$.

In this case, we say that V is a direct sum of V_1, \ldots, V_k , and we write

$$V = \bigoplus_{i=1}^{k} V_i = V_1 \oplus V_2 \oplus \dots \oplus V_k$$

Prove the following:

- (a) (2 points) The decomposition $v = v_1 + \cdots + v_k$ is unique. In other words, show that if $v = v'_1 + \cdots + v'_k$ is another decomposition (with $v'_i \in V_i$), then $v_i = v'_i$ for each *i*. Note that the case k = 2 was done in homework 2 (§1.3, Problem 30).
- (b) (2 points) Show that if β_1, \ldots, β_k are arbitrary bases for V_1, \ldots, V_k respectively, then $\beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$ is a basis for V.

Remark. In the original (mistaken) formulation of the problem, property (A) required $V_i \cap V_j = 0$ for every $i \neq j$. However, this is not enough to guarantee the statements in (a) and (b). Food for thought: Can you find an example of V, V_1, \ldots, V_k such that the statements in (a) and (b) don't hold? Note that k will necessarily have to be ≥ 3 . More food for thought: how can we see that for a linear operator $T: V \to V$, V is a direct sum of generalized eigenspaces? We know that $K_{\lambda} \cap K_{\mu} = 0$ for any $\lambda \neq \mu$, but this is not enough to ensure that it is a direct sum. It turns out property (A) is also a consequence of the statement in (a), and the statement in (a) was proven in Theorem 7.3 (in §7.1 of the book). The proof is easy in the k = 2 case (which we illustrated in class), but for $k \geq 3$, the proof uses some additional tools which are available in our setting.

A2. For problems A2 and A3, it may help (though not strictly necessary) to take a look at appendix E. Let $f(t) = (t-3)^2$ and g(t) = (t-1). In the language of appendix E, f(t), g(t) are relatively prime polynomials.

¹Here, for an example, if k = 4 and j = 2, then $\sum_{i \neq 2} V_i = V_1 + V_3 + V_4 = \operatorname{Span} V_1 \cup V_3 \cup V_4$.

(a) (1 point) Find polynomials $q_1(t), r_1(t)$ with deg $r_1(t) < \deg g(t) = 1$ such that

$$f(t) = q_1(t)g(t) + r_1(t)$$

(Hint: $r_1(t)$ should be a nonzero constant)

(b) (1 point) Using the relation $r_1(t) = f(t) - q_1(t)g(t)$, find polynomials c(t), d(t) such that

$$c(t)f(t) + d(t)g(t) = 1$$

(Hint: some fractions should appear)

(c) (1 point) Let $T: V \to V$ be a linear operator on a vector space V. Verify by expanding the polynomials that (T) f(T) + I(T) (T) = I

$$c(T)f(T) + d(T)g(T) = I$$

where I denotes the identity operator on V.

- A3. Let $f(t) = (t-1)^3$ and g(t) = (t-2)(t-3). In the language of appendix E, f(t), g(t) are relatively prime polynomials.
 - (a) (1 point) Find polynomials $q_1(t), r_1(t)$ with deg $r_1(t) < \deg g(t) = 2$ such that

$$f(t) = q_1(t)g(t) + r_1(t)$$

(Hint: $r_1(t)$ should be degree 1)

(b) (1 point) Find polynomials $q_2(t), r_2(t)$ with deg $r_2(t) < \deg r_1(t) = 1$ such that

$$g(t) = q_2(t)r_1(t) + r_2(t)$$

(Hint: $r_2(t)$ should be nonzero and degree 0, i.e., it should be a nonzero constant. Some fractions will appear in the coefficients.)

(c) (1 point) Note that $r_1(t) = f(t) - q_1(t)g(t)$ (i.e., $r_1(t)$ is a "polynomial linear combination of f(t), g(t)"). Similarly, $r_2(t) = g(t) - q_2(t)r_1(t)$. Use this to find polynomials c(t), d(t) such that

$$c(t)f(t) + d(t)g(t) = 1$$