
MATH 350 Linear Algebra
Homework 9

Instructor: Will Chen

December 2, 2022

Problems
Book Problems (2 points each, 20 points total)

• Section 7.1, Problems 2a, 2c, 3b, 5, 12

• Section 7.2, Problem 3a, 3b, 3c, 3d, 3e

Additional Problems (10 points total)

A1. Let V be a finite dimensional vector space. Suppose V1, . . . , Vk are subspaces of V satisfying the following
2 properties

(A) For every j ∈ {1, . . . , k}, Vj ∩
∑
i 6=j Vi = 0. 1

(B) V =
∑k
i=1 Vi. In other words, every v ∈ V can be written as a sum v = v1+ · · ·+vk with each vi ∈ Vi.

In this case, we say that V is a direct sum of V1, . . . , Vk, and we write

V =

k⊕
i=1

Vi = V1 ⊕ V2 ⊕ · · · ⊕ Vk

Prove the following:

(a) (2 points) The decomposition v = v1+ · · ·+vk is unique. In other words, show that if v = v′1+ · · ·+v′k
is another decomposition (with v′i ∈ Vi), then vi = v′i for each i. Note that the case k = 2 was done
in homework 2 (§1.3, Problem 30).

(b) (2 points) Show that if β1, . . . , βk are arbitrary bases for V1, . . . , Vk respectively, then β1∪β2∪· · ·∪βk
is a basis for V .

Remark. In the original (mistaken) formulation of the problem, property (A) required Vi ∩ Vj = 0 for
every i 6= j. However, this is not enough to guarantee the statements in (a) and (b). Food for thought: Can
you find an example of V, V1, . . . , Vk such that the statements in (a) and (b) don’t hold? Note that k will
necessarily have to be ≥ 3. More food for thought: how can we see that for a linear operator T : V → V ,
V is a direct sum of generalized eigenspaces? We know that Kλ ∩Kµ = 0 for any λ 6= µ, but this is not
enough to ensure that it is a direct sum. It turns out property (A) is also a consequence of the statement
in (a), and the statement in (a) was proven in Theorem 7.3 (in §7.1 of the book). The proof is easy in the
k = 2 case (which we illustrated in class), but for k ≥ 3, the proof uses some additional tools which are
available in our setting.

A2. For problems A2 and A3, it may help (though not strictly necessary) to take a look at appendix E. Let
f(t) = (t−3)2 and g(t) = (t−1). In the language of appendix E, f(t), g(t) are relatively prime polynomials.

1Here, for an example, if k = 4 and j = 2, then
∑

i 6=2 Vi = V1 + V3 + V4 = SpanV1 ∪ V3 ∪ V4.
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(a) (1 point) Find polynomials q1(t), r1(t) with deg r1(t) < deg g(t) = 1 such that

f(t) = q1(t)g(t) + r1(t)

(Hint: r1(t) should be a nonzero constant)

(b) (1 point) Using the relation r1(t) = f(t)− q1(t)g(t), find polynomials c(t), d(t) such that

c(t)f(t) + d(t)g(t) = 1

(Hint: some fractions should appear)

(c) (1 point) Let T : V → V be a linear operator on a vector space V . Verify by expanding the polynomials
that

c(T )f(T ) + d(T )g(T ) = I

where I denotes the identity operator on V .

A3. Let f(t) = (t− 1)3 and g(t) = (t− 2)(t− 3). In the language of appendix E, f(t), g(t) are relatively prime
polynomials.

(a) (1 point) Find polynomials q1(t), r1(t) with deg r1(t) < deg g(t) = 2 such that

f(t) = q1(t)g(t) + r1(t)

(Hint: r1(t) should be degree 1)

(b) (1 point) Find polynomials q2(t), r2(t) with deg r2(t) < deg r1(t) = 1 such that

g(t) = q2(t)r1(t) + r2(t)

(Hint: r2(t) should be nonzero and degree 0, i.e., it should be a nonzero constant. Some fractions will
appear in the coefficients.)

(c) (1 point) Note that r1(t) = f(t)−q1(t)g(t) (i.e., r1(t) is a “polynomial linear combination of f(t), g(t)”).
Similarly, r2(t) = g(t)− q2(t)r1(t). Use this to find polynomials c(t), d(t) such that

c(t)f(t) + d(t)g(t) = 1
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