MATH 350 Linear Algebra

Homework 9 Solutions

Instructor: Will Chen

December 13, 2022

Problems

Book Problems (2 points each, 20 points total)
e Section 7.1, Problems 2a, 2c, 3b, 5, 12

e Section 7.2, Problem 3a, 3b, 3c, 3d, 3e

Additional Problems (10 points total)

Al.

A2.

Let V be a finite dimensional vector space. Suppose V1, ..., V) are subspaces of V satisfying the following
2 properties

(A) Foreveryje{l,...,k},VJ-OZ#J,VZ-:(),E

(B) V= Zle V;. In other words, every v € V can be written as a sum v = vy +- - - + vy, with each v; € V.
In this case, we say that V is a direct sum of Vi,..., V, and we write

k

V=@PVvi=hioVo oV
i=1

Prove the following:

(a) (2 points) The decomposition v = v1 +- - -+ vy, is unique. In other words, show that if v = v| +---+v},
is another decomposition (with v} € V;), then v; = v} for each i. Note that the case k = 2 was done
in homework 2 (§1.3, Problem 30).

(b) (2 points) Show that if §1, ..., B are arbitrary bases for Vi, ..., V} respectively, then 5 UByU---UBg
is a basis for V.

Remark. In the original (mistaken) formulation of the problem, property (A) required V; NV, = 0 for
every i # j. However, this is not enough to guarantee the statements in (a) and (b). Food for thought: Can
you find an example of V) Vi, ..., Vi such that the statements in (a) and (b) don’t hold? Note that k will
necessarily have to be > 3. More food for thought: how can we see that for a linear operator T': V — V,
V is a direct sum of generalized eigenspaces? We know that Ky N K, = 0 for any A # pu, but this is not
enough to ensure that it is a direct sum. It turns out property (A) is also a consequence of the statement
in (a), and the statement in (a) was proven in Theorem 7.3 (in §7.1 of the book). The proof is easy in the
k = 2 case (which we illustrated in class), but for k& > 3, the proof uses some additional tools which are
available in our setting.

For problems A2 and A3, it may help (though not strictly necessary) to take a look at appendix E. Let
f(t) = (t—3)? and g(t) = (t—1). In the language of appendix E, f(t), g(t) are relatively prime polynomials.

IHere, for an example, if k =4 and j = 2, then Z#Q Vi=V1i+Vs+Vy=SpanVi UV3UVj.



(a) (1 point) Find polynomials ¢;(t), 71 (¢) with degr(¢) < degg(t) = 1 such that

ft) = a()g(t) +r1(t)
(Hint: 74 (¢) should be a nonzero constant)
(b) (1 point) Using the relation r1(¢t) = f(t) — ¢1(t)g(¢), find polynomials ¢(¢), d(t) such that
() f(t) +d(t)g(t) =1
(Hint: some fractions should appear)

(¢) (1 point) Let T: V — V be a linear operator on a vector space V. Verify by expanding the polynomials
that
(M) +d(T)g(T) =1

where I denotes the identity operator on V.

A3. Let f(t) = (t —1)® and g(t) = (¢t — 2)(t — 3). In the language of appendix E, f(t), g(t) are relatively prime
polynomials.

(a) (1 point) Find polynomials ¢;(t),r1(¢) with degri(t) < degg(t) = 2 such that
ft) = a(t)g(t) +r1(t)
(Hint: 74 (¢) should be degree 1)
(b) (1 point) Find polynomials ga(t), r2(t) with degra(t) < degr1(t) = 1 such that
g(t) = q2()r1(t) + r2(t)

(Hint: r3(t) should be nonzero and degree 0, i.e., it should be a nonzero constant. Some fractions will
appear in the coefficients.)

(¢) (1 point) Note that r1(t) = f(t)—q1(¢)g(t) (i-e., r1(¢) is a “polynomial linear combination of f(¢), g(t)”).
Similarly, r2(t) = g(t) — q2(t)r1(¢). Use this to find polynomials ¢(t), d(t) such that

c(t)f(t) +d(t)g(t) =1

Solutions

§7.1, 2a Find the Jordan canonical form and a basis consisting of a union of disjoint cycles of generalized eigenvectors
for A = [_11 é]

Solution. The characteristic polynomial is x4 (t) =t — 4t + 4 = (t — 2)?, so the only eigenvalue is 2 with
multiplicity 2. One computes that N(A —2I) = N ([Z] 1]) has basis [}], so A has basis consisting of a
single cycle of length 2 with initial vector [1]. It follows that the Jordan canonical form is

AT =(33)
The end vector of our cycle can be chosen to be any v satisfying
(A -2 =[{]

Solving this, we get v = [y] where —z +y = 1. Thus we can take v = [1], so 8 = {[1],[1]} is a basis
consisting of cycles. One should check that A7 = [A4]s.

§7.1, 2¢ Find the Jordan canonical form and a basis consisting of a union of disjoint cycles of generalized eigenvectors

for
11 -4 -5
A=1]21 -8 -11
3 -1 0



§7.1, 3b

§7.1,5

Solution. The characteristic polynomial of A is ya(t) = —t2 +3t?2 —4 = (2—t)?(1 + 1), so the eigenvalues
of A are 2 with multiplicity 2, and -1 with multiplicity 1. We can compute that

9 —4 -5
Ey=N(A-2)=N || 21 —-10 -11
3 -1 -2

is spanned by (—1,—1,—1), so the dot diagram of Ak, has a single column of size 2, corresponding to a
single cycle of length 2. It follows that the Jordan canonical form of A is

2 1 0
AT=102 0
0 0 -1
We can take the initial vector of this cycle to be b = (=1, —1,—1), so we can take the end vector to be any
vector x satisfying (A — 2)z = b. We can check that

0
z=| -1 satisfies (A-2Dzx=b
1
so we can take {(—1,—-1,—-1), (0, 1)} to be the cycle for Ko. For K_y = E_;, a basis is (1,3,0). It

follows that g = {(—1, -1, —1), (0, 1,1),(1,3,0)} is a basis of cycles for A. Again one should check that
[A]g = A7,

Let V be the real vector space spanned by the set of real valued functions v = {1,¢,t? e te'}. Let
T :V — V be the linear operator defined by T(f) = f’. Find a Jordan canonical form of T, and a basis
of V' consisting of a union of cycles of generalized eigenvectors.

Solution. First, one should check that the set 7 is linearly independent. Note that T(e!) = e! and
T(te') = e* + tet. Then

01000
00200
Tl,=]0 00 0 0
00011
0000 1

This matrix is upper triangular, and so we easily see that the characteristic polynomial is y7(z) = (—z)3(1—
7)?2, so the eigenvalues are 0 and 1 with multiplicities 3 and 2 respectively. For K, one easily checks that
{e!,te'} C K is already a cycle of generalized 1-eigenvectors. For Ky, one easily checks that dim N (Tk,) =
1, dim N(T%,) = 2, and dim N(Tj, ) = 3. It follows that Ky has a dot diagram with a single column of
size 3, hence admits a basis consisting of a single cycle. The end vector of this cycle can be taken to be
any vector in N (T}, ) that is not in N(T%, ). For example, one can take #*. In this case, the associated
cycle is {2, 2t,%}. Thus
B ={2,2t,t% ¢ te'}

is a basis of V' consisting of cycles of generalized eigenvectors. The associated Jordan canonical form is

01000
001 00
Tljg=|0 0 0 0 O
000 11
000 01
Let 7v1,...,7p be cycles of generalized eigenvectors of a linear operator 7' corresponding to an eigenvalue

A. Prove that if the initial eigenvectors are distinct, then the cycles are disjoint.



§7.1, 12

§7.2, 3a

§7.2, 3b

§7.2, 3¢

Proof. You should prove this directly. Do not simply use Theorem 7.6. Let +; ; denote the initial vector
of the cycle ;. We will prove the contrapositive, that if the cycles are not disjoint, then the initial vectors
cannot all be distinct. Assume the cycles are not disjoint, so that v;,, = 7;m for some ¢ # j. Then the

cycles C, ,C,, . are equal. Since 7, is also the initial vector of the cycle C.,, , and similarly ~;; is the
initial vector of C,, , since C,, = C,, , it follows that ;1 = 7, 1, so the initial vectors are not distinct.

O

Let T be a linear operator on a finite dimensional vector space V', and let A be an eigenvalue of T" with
corresponding eigenspace E\ and generalized eigenspace K. Let U be an invertible linear operator on V'
that commutes with T, i.e., TU = UT. Prove that U(E)) = E) and U(K,) = K.

Proof. Suppose v € E), then Tv = M. Then TUv = UTv = Ulv = AUwv, which is exactly to say that
Uv € E).

Similarly, suppose v € K. Then for some p > 1, (T — AI)Pv = 0. Then
(T — A)PUv = U(T — \XI)Pv = U0 = 0
which is exactly to say that Uv € K. O

Note that in the first equality in the final equation, we have used the fact that if U commutes with T, then
U commutes with any polynomial in T (e.g., it commutes with (T — AI)?. For example, for any scalars
017 b? c7

U(aT? 40T +cl) = aUT? + bUT + cUI = aT?U + bTU + clU = (aT? + bT + I )U.

Let T be the linear operator on a finite dimensional vector space V' with Jordan canonical form

21000 00
0210000
0020000

J=[000 210 0
0000200
00000 30
000000 3]

Find the characteristic polynomial of T'.

Solution. Since T is similar to J, they have the same characteristic polynomials, so x7 = x;5 = (2 —
t)°(3—1)

With notation as in 3a, find the dot diagram corresponding to each eigenvalue of T

Solution. There are two eigenvalues 2 and 3. Since J has two Jordan blocks associated to the eigenvalue
2, of sizes 3 and 2, it follows that the K5 has a basis consisting of two cycles of generalized 2-eigenvectors,
of lengths 3 and 2. Thus the dot diagram for the eigenvalue 2 takes the form

For the eigenvalue 3, one should note that there are in fact two Jordan blocks, each of size 1 (not a single
Jordan block of size 2!) It follows that the K3 admits a basis consisting of two cycles of length 1. In other
words, it admits an eigenbasis. Thus the dot diagram takes the form

For which eigenvalues \;, if any, does Ey, = K.

Solution. Since the dot diagram for A; is a basis for K,, and the first row is a basis for E},, it follows
that Ey, = K, if and only if the corresponding dot diagram consists of a single row. In our case, we find
that for the eigenvalue 3, E5 = Kj3. This can also be computed by checking that N(J —3I) = N((J—31I)?).



§7.3, 3d

§7.3, 3e

Al(a)

Al(b)

A2(a)

For each eigenvalue \;, find the smallest positive integer p; for which Ky, = N((T — X\, 1)P).

Solution. Recall that (T'— \;I) moves every dot in the dot diagram up by one, and sends the top row to
0. Thus, for the eigenvalue A\; = 2, p; = 3, and for Ay = 3, po = 1.

Compute the following numbers for each 4, where U; denotes the restriction of T — \;I to K.
(i) rank(U;)

(ii) rank(U?)

(iii) nullity(U;)

(iv) nullity(U?)

Solution. These can easily be read off from noting that the set of vectors associated to the dots in the
dot diagram are linearly independent, and that U; moves each dot up by one, and sends the top row to
0. For A\; = 2, we have rank(U;) = 3,rank(U2) = 1, nullity(U;) = 2, nullity(U?) = 4. One should keep in
mind that rank + nullity = 5 in each case. For the eigenvalue Ay = 3, we have rank(Us) = rank(U3) = 0,
and nullity (Us) = nullity (U3) = 2.

Prove that the decomposition v = vy + - - - + v is unique.

Proof. Suppose v = v} + - - - + vy, is another decomposition, with v € V;, then we have

V1 v+t ug =0+ vh 4 g

For any 7 € {1,...,k}, we can rearrange this to get
v — v = ZU; —Zvj
J#i J#i

where the sums on the right hand side range over all j € {1,...,k}, omitting j = ¢. The left hand side
clearly lies in V;, whereas the right hand side lies in 3, _, Vj, so property (A) implies that both the left
and right hand sides are 0. Le., v; = v}. Since this holds for each 4, this shows that the decomposition is
unique.

O
Show that if 8y, ..., Bk are bases for Vq,..., V) respectively, then the union 5y U--- U B is a basis for V.

Proof. Let 8 := 1 U---UpB. If v € V, then by property (B), v can be written as a sum vy + -+ + v
where v; € V; for each i. Writing each v; as a linear combination of elements in 3;, it follows that v is a
linear combination of vectors in 8. This shows that 5 spans V.

To see that 3 is linearly independent, write 8%, 82, ..., 3" be the elements of 3. If
af'+-+a8t=0

then we may group together the terms lying in each 3;. Let v; be the sum of the terms consisting of vectors
in B;, so that v; € V; and v = Z§:1 vj. By Al(a), we must have that each v; = 0, but since each f; is a
basis (and hence linearly independent), we find that all the coefficients of elements of 3; are 0. Since this
holds for each j, it follows that all of the a;’s are 0, so 3 is linearly independent.

We’ve shown that 5 spans V' and is linearly independent, so it is a basis for V. O

Solution. tg(t) = t(t — 1) =t — t kills the leading term of f(t) = (t — 3)? = > — 6t + 9. An additional
—5(t — 1) = =5t + 5 kills the second term, with remainder 4. Thus, we have

F(t)=(t=3)* = (t = 5)g(t) + 4 = (t — 5)(t — 1) + 4

Thus ¢1(t) =t — 5, r(t) =



A2(b)

A2(c)

A3(a)

A3(b)

A3(c)

Solution. Since 4 = r1(t) = f(t) — q1(t)g(t) = f(t) — (t — 5)g(¢), we have

Thus we can take c(t) = 1 and d(t) = —52.

Solution. We have

c(T)f(T)+d(T)g(T) = %I(TfSI)in(TfE’)I)(TfI) = iI(T2—6T+91)—i(T2—6T+5I) = %Ifgl =

Solution. Note that f(t) = (t—1)3 =3 —3t>+3t+1, and g(t) = (t—2)(t—3) = t> -5t +6. As before, we
want to match up the leading terms. We can fit tg(t) into f(t), with remainder f(t) —tg(t) = 2t — 3t +1,
which means we can fit another 2¢(t). Thus, we have

f(t) = (t+2)g(t) + (7t - 13)

Thus ¢1(¢t) =t + 2 and r1(t) = 7t — 13.

Solution. We can fit 1¢r(t) into g(t), with remainder
1 1 22
g(t) — §tr1(t) =t? —5t+6— <t2 - 73:5) =-—=t+6

Since the degree of the remainder is not less than r(t), we keep going. We can fit another —%7‘1 (t) into
g(t), to give a joint remainder of

1 22 8

ro(t) = g(t) — ?trl(t) - <—497“1(t)> -5

Thus, we have ga2(t) = 2t — 22 and r(t) = 5.

Solution. Now 71 (t) = f(t) — q1(t)g(t), and ro(t) = g(t) — g2(t)r1(¢), so

70 = 2() = 9(O)—a2(O)(f (1) =1 ()g(t)) = 9(t) =2 (1) f (1) +42(t) 1 ()9 (t) = —q2(8) F (1) +(1+2(t) g1 (£))9 (%)

9 )+ 49 + 49q;(t)q1(t))

In other words, we can take c(t) = =32¢5(t) and d(t) = %(t)ql(t).

g9(t)



