MATH 350 Linear Algebra Homework 9 Solutions

Instructor: Will Chen

December 13, 2022

Problems

Book Problems (2 points each, 20 points total)

- Section 7.1, Problems 2a, 2c, 3b, 5, 12
- Section 7.2, Problem 3a, 3b, 3c, 3d, 3e

Additional Problems (10 points total)

- A1. Let V be a finite dimensional vector space. Suppose V_1, \ldots, V_k are subspaces of V satisfying the following 2 properties
 - (A) For every $j \in \{1, ..., k\}, V_j \cap \sum_{i \neq j} V_i = 0.^{-1}$
 - (B) $V = \sum_{i=1}^{k} V_i$. In other words, every $v \in V$ can be written as a sum $v = v_1 + \dots + v_k$ with each $v_i \in V_i$.

In this case, we say that V is a direct sum of V_1, \ldots, V_k , and we write

$$V = \bigoplus_{i=1}^{k} V_i = V_1 \oplus V_2 \oplus \dots \oplus V_k$$

Prove the following:

- (a) (2 points) The decomposition $v = v_1 + \cdots + v_k$ is unique. In other words, show that if $v = v'_1 + \cdots + v'_k$ is another decomposition (with $v'_i \in V_i$), then $v_i = v'_i$ for each *i*. Note that the case k = 2 was done in homework 2 (§1.3, Problem 30).
- (b) (2 points) Show that if β_1, \ldots, β_k are arbitrary bases for V_1, \ldots, V_k respectively, then $\beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$ is a basis for V.

Remark. In the original (mistaken) formulation of the problem, property (A) required $V_i \cap V_j = 0$ for every $i \neq j$. However, this is not enough to guarantee the statements in (a) and (b). Food for thought: Can you find an example of V, V_1, \ldots, V_k such that the statements in (a) and (b) don't hold? Note that k will necessarily have to be ≥ 3 . More food for thought: how can we see that for a linear operator $T: V \to V$, V is a direct sum of generalized eigenspaces? We know that $K_\lambda \cap K_\mu = 0$ for any $\lambda \neq \mu$, but this is not enough to ensure that it is a direct sum. It turns out property (A) is also a consequence of the statement in (a), and the statement in (a) was proven in Theorem 7.3 (in §7.1 of the book). The proof is easy in the k = 2 case (which we illustrated in class), but for $k \geq 3$, the proof uses some additional tools which are available in our setting.

A2. For problems A2 and A3, it may help (though not strictly necessary) to take a look at appendix E. Let $f(t) = (t-3)^2$ and g(t) = (t-1). In the language of appendix E, f(t), g(t) are relatively prime polynomials.

¹Here, for an example, if k = 4 and j = 2, then $\sum_{i \neq 2} V_i = V_1 + V_3 + V_4 = \operatorname{Span} V_1 \cup V_3 \cup V_4$.

(a) (1 point) Find polynomials $q_1(t), r_1(t)$ with deg $r_1(t) < \deg g(t) = 1$ such that

$$f(t) = q_1(t)g(t) + r_1(t)$$

(Hint: $r_1(t)$ should be a nonzero constant)

(b) (1 point) Using the relation $r_1(t) = f(t) - q_1(t)g(t)$, find polynomials c(t), d(t) such that

$$c(t)f(t) + d(t)g(t) = 1$$

(Hint: some fractions should appear)

(c) (1 point) Let $T: V \to V$ be a linear operator on a vector space V. Verify by expanding the polynomials that

$$c(T)f(T) + d(T)g(T) = I$$

where I denotes the identity operator on V.

- A3. Let $f(t) = (t-1)^3$ and g(t) = (t-2)(t-3). In the language of appendix E, f(t), g(t) are relatively prime polynomials.
 - (a) (1 point) Find polynomials $q_1(t), r_1(t)$ with deg $r_1(t) < \deg g(t) = 2$ such that

$$f(t) = q_1(t)g(t) + r_1(t)$$

(Hint: $r_1(t)$ should be degree 1)

(b) (1 point) Find polynomials $q_2(t), r_2(t)$ with deg $r_2(t) < \deg r_1(t) = 1$ such that

$$g(t) = q_2(t)r_1(t) + r_2(t)$$

(Hint: $r_2(t)$ should be nonzero and degree 0, i.e., it should be a nonzero constant. Some fractions will appear in the coefficients.)

(c) (1 point) Note that $r_1(t) = f(t) - q_1(t)g(t)$ (i.e., $r_1(t)$ is a "polynomial linear combination of f(t), g(t)"). Similarly, $r_2(t) = g(t) - q_2(t)r_1(t)$. Use this to find polynomials c(t), d(t) such that

$$c(t)f(t) + d(t)g(t) = 1$$

Solutions

§7.1, 2a Find the Jordan canonical form and a basis consisting of a union of disjoint cycles of generalized eigenvectors for $A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$.

Solution. The characteristic polynomial is $\chi_A(t) = t^2 - 4t + 4 = (t-2)^2$, so the only eigenvalue is 2 with multiplicity 2. One computes that $N(A - 2I) = N\left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right)$ has basis $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, so A has basis consisting of a single cycle of length 2 with initial vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. It follows that the Jordan canonical form is

$$A^{J} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

The end vector of our cycle can be chosen to be any v satisfying

$$(A - 2I)v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Solving this, we get $v = \begin{bmatrix} x \\ y \end{bmatrix}$ where -x + y = 1. Thus we can take $v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, so $\beta = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$ is a basis consisting of cycles. One should check that $A^J = [A]_{\beta}$.

§7.1, 2c Find the Jordan canonical form and a basis consisting of a union of disjoint cycles of generalized eigenvectors for

$$A = \begin{bmatrix} 11 & -4 & -5\\ 21 & -8 & -11\\ 3 & -1 & 0 \end{bmatrix}$$

Solution. The characteristic polynomial of A is $\chi_A(t) = -t^3 + 3t^2 - 4 = (2-t)^2(1+t)$, so the eigenvalues of A are 2 with multiplicity 2, and -1 with multiplicity 1. We can compute that

$$E_2 = N(A - 2I) = N\left(\begin{bmatrix} 9 & -4 & -5\\ 21 & -10 & -11\\ 3 & -1 & -2 \end{bmatrix} \right)$$

is spanned by (-1, -1, -1), so the dot diagram of A_{K_2} has a single column of size 2, corresponding to a single cycle of length 2. It follows that the Jordan canonical form of A is

$$A^J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

We can take the initial vector of this cycle to be b = (-1, -1, -1), so we can take the end vector to be any vector x satisfying (A - 2I)x = b. We can check that

$$x = \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix} \quad \text{satisfies} \quad (A - 2I)x = b$$

so we can take $\{(-1, -1, -1), (0, -1, 1)\}$ to be the cycle for K_2 . For $K_{-1} = E_{-1}$, a basis is (1, 3, 0). It follows that $\beta = \{(-1, -1, -1), (0, -1, 1), (1, 3, 0)\}$ is a basis of cycles for A. Again one should check that $[A]_{\beta} = A^{J}$.

§7.1, 3b Let V be the real vector space spanned by the set of real valued functions $\gamma = \{1, t, t^2, e^t, te^t\}$. Let $T: V \to V$ be the linear operator defined by T(f) = f'. Find a Jordan canonical form of T, and a basis of V consisting of a union of cycles of generalized eigenvectors.

Solution. First, one should check that the set γ is linearly independent. Note that $T(e^t) = e^t$ and $T(te^t) = e^t + te^t$. Then

This matrix is upper triangular, and so we easily see that the characteristic polynomial is $\chi_T(x) = (-x)^3(1-x)^2$, so the eigenvalues are 0 and 1 with multiplicities 3 and 2 respectively. For K_1 , one easily checks that $\{e^t, te^t\} \subset K_1$ is already a cycle of generalized 1-eigenvectors. For K_0 , one easily checks that dim $N(T_{K_0}) = 1$, dim $N(T_{K_0}^2) = 2$, and dim $N(T_{K_0}^3) = 3$. It follows that K_0 has a dot diagram with a single column of size 3, hence admits a basis consisting of a single cycle. The end vector of this cycle can be taken to be any vector in $N(T_{K_0}^3)$ that is not in $N(T_{K_0}^2)$. For example, one can take t^2 . In this case, the associated cycle is $\{2, 2t, t^2\}$. Thus,

$$\beta = \{2, 2t, t^2, e^t, te^t\}$$

is a basis of V consisting of cycles of generalized eigenvectors. The associated Jordan canonical form is

§7.1, 5 Let $\gamma_1, \ldots, \gamma_p$ be cycles of generalized eigenvectors of a linear operator T corresponding to an eigenvalue λ . Prove that if the initial eigenvectors are distinct, then the cycles are disjoint.

Proof. You should prove this directly. Do not simply use Theorem 7.6. Let $\gamma_{i,1}$ denote the initial vector of the cycle γ_i . We will prove the contrapositive, that if the cycles are not disjoint, then the initial vectors cannot all be distinct. Assume the cycles are not disjoint, so that $\gamma_{i,n} = \gamma_{j,m}$ for some $i \neq j$. Then the cycles $C_{\gamma_{i,n}}, C_{\gamma_{j,m}}$ are equal. Since $\gamma_{i,1}$ is also the initial vector of the cycle $C_{\gamma_{i,n}}$, and similarly $\gamma_{j,1}$ is the initial vector of $C_{\gamma_{j,m}}$, since $C_{\gamma_{i,n}} = C_{\gamma_{j,m}}$, it follows that $\gamma_{i,1} = \gamma_{j,1}$, so the initial vectors are not distinct.

§7.1, 12 Let T be a linear operator on a finite dimensional vector space V, and let λ be an eigenvalue of T with corresponding eigenspace E_{λ} and generalized eigenspace K_{λ} . Let U be an invertible linear operator on V that commutes with T, i.e., TU = UT. Prove that $U(E_{\lambda}) = E_{\lambda}$ and $U(K_{\lambda}) = K_{\lambda}$.

Proof. Suppose $v \in E_{\lambda}$, then $Tv = \lambda v$. Then $TUv = UTv = U\lambda v = \lambda Uv$, which is exactly to say that $Uv \in E_{\lambda}$.

Similarly, suppose $v \in K_{\lambda}$. Then for some $p \ge 1$, $(T - \lambda I)^p v = 0$. Then

$$(T - \lambda I)^p Uv = U(T - \lambda I)^p v = U0 = 0$$

which is exactly to say that $Uv \in K_{\lambda}$.

Note that in the first equality in the final equation, we have used the fact that if U commutes with T, then U commutes with any polynomial in T (e.g., it commutes with $(T - \lambda I)^p$. For example, for any scalars a, b, c,

$$U(aT^{2} + bT + cI) = aUT^{2} + bUT + cUI = aT^{2}U + bTU + cIU = (aT^{2} + bT + cI)U.$$

§7.2, 3a Let T be the linear operator on a finite dimensional vector space V with Jordan canonical form

$$J = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Find the characteristic polynomial of T.

Solution. Since T is similar to J, they have the same characteristic polynomials, so $\chi_T = \chi_J = (2 - t)^5 (3 - t)^2$

§7.2, 3b With notation as in 3a, find the dot diagram corresponding to each eigenvalue of T.

Solution. There are two eigenvalues 2 and 3. Since J has two Jordan blocks associated to the eigenvalue 2, of sizes 3 and 2, it follows that the K_2 has a basis consisting of two cycles of generalized 2-eigenvectors, of lengths 3 and 2. Thus the dot diagram for the eigenvalue 2 takes the form

•••

For the eigenvalue 3, one should note that there are in fact two Jordan blocks, each of size 1 (not a single Jordan block of size 2!) It follows that the K_3 admits a basis consisting of two cycles of length 1. In other words, it admits an eigenbasis. Thus the dot diagram takes the form

• •

§7.2, 3c For which eigenvalues λ_i , if any, does $E_{\lambda_i} = K_{\lambda_i}$.

Solution. Since the dot diagram for λ_i is a basis for K_{λ_i} , and the first row is a basis for E_{λ_i} , it follows that $E_{\lambda_i} = K_{\lambda_i}$ if and only if the corresponding dot diagram consists of a single row. In our case, we find that for the eigenvalue 3, $E_3 = K_3$. This can also be computed by checking that $N(J-3I) = N((J-3I)^2)$.

§7.3, 3d For each eigenvalue λ_i , find the smallest positive integer p_i for which $K_{\lambda_i} = N((T - \lambda_i I)^{p_i})$.

Solution. Recall that $(T - \lambda_i I)$ moves every dot in the dot diagram up by one, and sends the top row to 0. Thus, for the eigenvalue $\lambda_1 = 2$, $p_1 = 3$, and for $\lambda_2 = 3$, $p_2 = 1$.

- §7.3, 3e Compute the following numbers for each i, where U_i denotes the restriction of $T \lambda_i I$ to K_{λ_i} .
 - (i) $\operatorname{rank}(U_i)$
 - (ii) rank (U_i^2)
 - (iii) nullity (U_i)
 - (iv) nullity (U_i^2)

Solution. These can easily be read off from noting that the set of vectors associated to the dots in the dot diagram are linearly independent, and that U_i moves each dot up by one, and sends the top row to 0. For $\lambda_1 = 2$, we have $\operatorname{rank}(U_1) = 3$, $\operatorname{rank}(U_1^2) = 1$, $\operatorname{nullity}(U_1) = 2$, $\operatorname{nullity}(U_1^2) = 4$. One should keep in mind that $\operatorname{rank} + \operatorname{nullity} = 5$ in each case. For the eigenvalue $\lambda_2 = 3$, we have $\operatorname{rank}(U_2) = \operatorname{rank}(U_2^2) = 0$, and $\operatorname{nullity}(U_2) = \operatorname{nullity}(U_2^2) = 2$.

A1(a) Prove that the decomposition $v = v_1 + \cdots + v_k$ is unique.

Proof. Suppose $v = v'_1 + \cdots + v'_k$ is another decomposition, with $v'_i \in V_i$, then we have

$$v_1 + v_2 + \dots + v_k = v'_1 + v'_2 + \dots + v'_k$$

For any $i \in \{1, \ldots, k\}$, we can rearrange this to get

$$v_i - v'_i = \sum_{j \neq i} v'_j - \sum_{j \neq i} v_j$$

where the sums on the right hand side range over all $j \in \{1, \ldots, k\}$, omitting j = i. The left hand side clearly lies in V_i , whereas the right hand side lies in $\sum_{j \neq i} V_j$, so property (A) implies that both the left and right hand sides are 0. I.e., $v_i = v'_i$. Since this holds for each *i*, this shows that the decomposition is unique.

A1(b) Show that if β_1, \ldots, β_k are bases for V_1, \ldots, V_k respectively, then the union $\beta_1 \cup \cdots \cup \beta_k$ is a basis for V. *Proof.* Let $\beta := \beta_1 \cup \cdots \cup \beta_k$. If $v \in V$, then by property (B), v can be written as a sum $v_1 + \cdots + v_k$ where $v_i \in V_i$ for each i. Writing each v_i as a linear combination of elements in β_i , it follows that v is a linear combination of vectors in β . This shows that β spans V.

To see that β is linearly independent, write $\beta^1, \beta^2, \dots, \beta^n$ be the elements of β . If

$$a_1\beta^1 + \dots + a_n\beta^n = 0$$

then we may group together the terms lying in each β_j . Let v_j be the sum of the terms consisting of vectors in β_j , so that $v_j \in V_j$ and $v = \sum_{j=1}^k v_j$. By A1(a), we must have that each $v_j = 0$, but since each β_j is a basis (and hence linearly independent), we find that all the coefficients of elements of β_j are 0. Since this holds for each j, it follows that all of the a_i 's are 0, so β is linearly independent.

We've shown that β spans V and is linearly independent, so it is a basis for V.

A2(a) Solution. $tg(t) = t(t-1) = t^2 - t$ kills the leading term of $f(t) = (t-3)^2 = t^2 - 6t + 9$. An additional -5(t-1) = -5t + 5 kills the second term, with remainder 4. Thus, we have

$$f(t) = (t-3)^2 = (t-5)g(t) + 4 = (t-5)(t-1) + 4$$

Thus $q_1(t) = t - 5$, $r_1(t) = 4$.

A2(b) Solution. Since $4 = r_1(t) = f(t) - q_1(t)g(t) = f(t) - (t-5)g(t)$, we have

$$1=\frac{1}{4}f(t)-\frac{t-5}{4}g(t)$$

Thus we can take $c(t) = \frac{1}{4}$ and $d(t) = -\frac{t-5}{4}$.

A2(c) Solution. We have

$$c(T)f(T) + d(T)g(T) = \frac{1}{4}I(T - 3I)^2 - \frac{1}{4}(T - 5I)(T - I) = \frac{1}{4}I(T^2 - 6T + 9I) - \frac{1}{4}(T^2 - 6T + 5I) = \frac{9}{4}I - \frac{5}{4}I = I$$

A3(a) Solution. Note that $f(t) = (t-1)^3 = t^3 - 3t^2 + 3t + 1$, and $g(t) = (t-2)(t-3) = t^2 - 5t + 6$. As before, we want to match up the leading terms. We can fit tg(t) into f(t), with remainder $f(t) - tg(t) = 2t^2 - 3t + 1$, which means we can fit another 2g(t). Thus, we have

$$f(t) = (t+2)g(t) + (7t-13)$$

Thus $q_1(t) = t + 2$ and $r_1(t) = 7t - 13$.

A3(b) Solution. We can fit $\frac{1}{7}tr_1(t)$ into g(t), with remainder

$$g(t) - \frac{1}{7}tr_1(t) = t^2 - 5t + 6 - \left(t^2 - \frac{13}{7}t\right) = -\frac{22}{7}t + 6$$

Since the degree of the remainder is not less than $r_1(t)$, we keep going. We can fit another $-\frac{22}{49}r_1(t)$ into g(t), to give a joint remainder of

$$r_2(t) = g(t) - \frac{1}{7}tr_1(t) - \left(-\frac{22}{49}r_1(t)\right) = \frac{8}{49}$$

Thus, we have $q_2(t) = \frac{1}{7}t - \frac{22}{49}$ and $r_2(t) = \frac{8}{49}$.

A3(c) Solution. Now $r_1(t) = f(t) - q_1(t)g(t)$, and $r_2(t) = g(t) - q_2(t)r_1(t)$, so

Thus

$$1 = -\frac{49}{8}q_2(t)f(t) + \frac{49 + 49q_2(t)q_1(t))}{8}g(t)$$

In other words, we can take $c(t) = \frac{-49}{8}q_2(t)$ and $d(t) = \frac{49+49q_2(t)q_1(t)}{8}$.