
MATH 350 Linear Algebra
Homework 8 Solutions

Instructor: Will Chen

November 14, 2022

Problems
Book Problems

• Section 5.4, Problem 1 (parts a,b,c,d). One point per part, 4 points total.

• Section 5.4, 2a, 2b, 2c, 3b, 3c, 6a, 6b, 9 (for 6a, 6b), 10 (for 6a, 6b), 23. Two points each, 20 points total.

Additional Problems Let V be a finite dimensional vector space over R and let T : V → V be linear.
Let λ1, . . . , λr be the distinct roots of the characteristic polynomial χT (t), with corresponding multiplicities
m1, . . . ,mr and eigenspaces E1, . . . , Er ⊂ V . In other words, we can write the characteristic polynomial as

χT (t) = (λ1 − t)m1 · · · (λr − t)mrg(t) (1)

where g(t) is either 1 or a polynomial of degree ≥ 2. Since degχT = dimV we have 0 ≤ r ≤ dimV , and∑r
i=1mi ≤ dimV .

• In the case where dimV = 2, we must have 0 ≤ r ≤ 2. In the last homework, we tested various linear
operators T for diagonalizability. Here is a classification of the possible situations one can encounter when
in the case dimV = 2.

– Suppose r = 2. This means there are two eigenvalues λ1, λ2, so the characteristic polynomial is split.
Since the muliplicities are all at least 1 and their sum is ≤ dimV = 2, the only possibility for the
multiplicities are m1 = m2 = 1. Since 1 ≤ dimEi ≤ mi = 1 for i = 1, 2, it follows that dimEi = mi

for i = 1, 2. In this case T is diagonalizable. An example of this situation is

T =

[
1 0
0 2

]
χT (t) = (t− 1)(t− 2), dimE1 = dimE2 = 1 = m1 = m2

– Suppose r = 1. This means there is exactly one eigenvalue λ1. Since χT (t) is degree 2, this means
λ1 must have multiplicity m1 = 2 (or else there would be two eigenvalues). In this case we have
1 ≤ dimE1 ≤ 2. If dimE1 = 1, then T is not diagonalizable. An example is

T =

[
1 1
0 1

]
χT (t) = (t− 1)2, dimE1 = 1 < m1 = 2

If dimE1 = 2, then T is diagonalizable. An example is

T =

[
1 0
0 1

]
χT (t) = (t− 1)2, dimE1 = 1 = m1 = 1

– Suppose r = 0. This means there are no eigenvalues, and hence T is not diagonalizable. An example
of this situation is:

T =
[
0 −1
1 0

]
, χT (t) = t2 + 1
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• (6 points) Now suppose dimV = 3. Your task is to perform the analogous classification as above in the
case dimV = 3.

– Suppose r = 3. What are the possible multiplicitiesm1,m2,m3? For each possible triple (m1,m2,m3),
list the possible dimensions of the eigenspaces E1, E2, E3. For each case, give an example of such a T
and compute its characteristic polynomial.

– Suppose r = 2. What are the possible multiplicities m1,m2? For each possible pair (m1,m2), list
the possible dimensions of the eigenspaces E1, E2. For each case, give an example of such a T and
compute its characteristic polynomial.

For this part, it is enough to consider the eigenvalues “up to permutation”. That is – you don’t need
to do the cases (m1,m2) = (1, 2) and (m1,m2) = (2, 1) separately. Just do one of them.

– Suppose r = 1. What are the possibilities for m1? For each possibility, list the possibilities for
the dimension of the eigenspace E1. For each possible dimension, give an example of such a T and
compute its characteristic polynomial.

– Suppose r = 0. Is this case possible? Note that we are working over R.

Hint. In the case r = 3, there is just one possibility for the multiplicities and dimensions of eigenspaces.
In the case r = 2, there are, in total, 2 possibilities up to permutation of the eigenvalues. In the case
r = 1, there are 4 possibilities. When looking for examples, it may help to consider upper triangular or
block-diagonal matrices.

Solutions
In my solutions, any solution which says anything to the effect of "details omitted" is not a complete solution –
in your writeup you would be expected to fill in the details. Otherwise, you can treat the solution as an example
of something that would earn you full credit. However some solutions include more detail than is necessary.

In general, solutions may have typos/errors. I guarantee that by the end of the semester there
will be at least one typo. Please let me know ASAP if you find any, so I can correct it.

§5.4, 1a True of False: There exists a linear operator T with no T -invariant subspace.

Solution. False. If T : V → V , then 0 and V are always T -invariant subspaces.

§5.4, 1b True of False: If T is a linear operator on a finite-dimensional vector space V and W is a T -invariant
subspace of V , then the characteristic polynomial of TW divides the characteristic polynomial of T .

Solution. True. This is Theorem 5.20.

§5.4, 1c True of False: Let T be a linear operator on a finite-dimensional vector space V , and let v and w be in V .
If W is the T -cyclic subspace generated by v, W ′ is the T -cyclic subspace generated by w, and W = W ′,
then v = w.

Solution. False. One counterexample is the rotation by 90 degrees matrix T =
[
0 −1
1 0

]
with V = R2. For

any nonzero vector v ∈ R2, the T -cyclic subspace generated by v is all of R2.

Another counterexample can be found if T has positive nullity. Let z ∈ V be such that z 6= 0 but T (z) = 0.
Then if v ∈ V is nonzero, then one easily checks that 〈v〉T = 〈v + z〉T , but of course v 6= v + z.

§5.4, 1d True of False: If T is a linear operator on a finite-dimensional vector space V , then for any v ∈ V the
T -cyclic subspace generated by v is the same as the T -cyclic subspace generated by T (v).

Solution. False. The most natural example is a polynomial space. Say, P3(R), and T (f(x)) = f ′(x).
Then 〈x3〉T = P3(R) = Span{1, x, x2, x3}, 〈T (x3)〉T = 〈3x2〉T = Span{1, x, x2}.
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§5.4, 2a For each of the following linear operators T on the vector space V , determine whether the given subspace
W is a T -invariant subspace of V .

V = P3(R), T (f(x)) = f ′(x), W = P2(R)

Solution. Yes, W is T -invariant. Differentiation maps degree ≤ 2 polynomials to degree ≤ 2 polynomials.
Note that T does not map W onto W , but that’s okay – T -invariance doesn’t require that TW be onto.

§5.4, 2b For each of the following linear operators T on the vector space V , determine whether the given subspace
W is a T -invariant subspace of V .

V = P (R), T (f(x)) = xf(x), W = P2(R)

Solution. No, W is not T -invariant. For example, x2 ∈W but T (x2) = x3 /∈W .

§5.4, 2c For each of the following linear operators T on the vector space V , determine whether the given subspace
W is a T -invariant subspace of V .

V = R3, T (a, b, c) = (a+ b+ c, a+ b+ c, a+ b+ c), W = {(t, t, t) : t ∈ R}

Solution. Yes W is T -invariant. For (t, t, t) ∈W , T (t, t, t) = (3t, 3t, 3t) ∈W , so W is T -invariant.

§5.4, 3b Let T be a linear operator on a finite dimensional vector space V . Prove that N(T ) and R(T ) are T -
invariant.

Proof. Let v ∈ N(T ). This means that T (v) = 0, but 0 ∈ N(T ), so T (v) ∈ N(T ) for all v ∈ N(T ), so N(T )
is T -invariant. Next, let v ∈ R(T ). This means that v = T (w) for some w ∈ V . Then T (v) = T (T (w)), but
T (T (w)) is the image of T (w) under T , so T (T (w)) ∈ R(T ), so T (v) ∈ R(T ), so R(T ) is T -invariant.

§5.4, 3c Let T be a linear operator on a finite dimensional vector space V . Prove that Eλ is T -invariant for any
eigenvalue λ of T .

Proof. Let v ∈ Eλ, then T (v) = λv, which is in Eλ since Eλ is a subspace. Alternatively, we can check
that λv is in Eλ by showing that T (λv) = λ(λv). Indeed,

T (λv) = λT (v) = λ(λv)

so λv ∈ Eλ.

§5.4, 6a For each linear operator T on the vector space V , find an ordered basis for the T -cyclic subspace generated
by the vector z.

V = R4, T (a, b, c, d) = (a+ b, b− c, a+ c, a+ d), z = e1

Solution. We must find the minimum k such that T ke1 is a linear combination of {e1, T e1, . . . , T k−1e1}.
First,

Te1 = (1, 0, 1, 1),

which is not a linear combination of {e1}. Next,

T 2e1 = T (Te1) = T (1, 0, 1, 1) = (1,−1, 2, 2)

This is not a linear combination of {e1, T e1} since T 2e1 = (1,−1, 2, 2) has a nonzero second entry, and
both e1, T e1 have zeros in their second entries. Next,

T 3e1 = T (T 2e1) = T (1,−1, 2, 2) = (0,−3, 3, 3)

To check if this is a linear combination of e1, T e1, T 2e2, we can solve some linear equations. Here we can
take a shortcut by observing that if it is, then by looking at the second entry, (0,−3, 3, 3) must involve 3
copies of T 2e1 = (1,−1, 2, 2). Then we have

(0,−3, 3, 3)− 3(1,−1, 2, 2) = (−3, 0,−3,−3) = −3Te1
Thus we have

T 3e1 = 3T 2e1 − 3Te1

Thus β = {(1, 0, 0, 0), (1, 0, 1, 1), (1,−1, 2, 2)} is a basis for 〈e1〉T .
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§5.4, 6b Same as 6a, but using
V = P3(R), T (f(x)) = f ′′(x), z = x3

Solution. As in 6a, we first note that T (x3) = 6x, which is not a linear combination of {x3}. Next,
T 2(x3) = 0, which is a linear combination of {x3, 6x}, so a basis for 〈x3〉T is β = {x3, 6x}.

§5.4, 9 For each operator T and invariant subspace W in 6a and 6b, compute the characteristic polynomial of TW
in two ways, as in example 6.

For 6a, the characteristic polynomial T〈e1〉T can be computed using Theorem 5.20 to be (−1)3(3t−3t2+t3) =
−t3 + 3t2 − 3t = −t(t2 − 3t+ 3).

By using determinants, we have

χT = det([T ]β − tI3) = det

 −t 0 0
1 −t −3
0 1 3− t

 = (−1) · 1 det
[
−t 0
1 −3

]
+ (3− t) det

[
−t 0
1 −t

]

· · · = −1(3t) + (3− t)(t2) = −3t+ 3t2 − t3

For 6b, the characteristic polynomial T〈x3〉T can be computed using Theorem 5.20 to be (−1)2(t2) = t2.
Using determinants, we have

χT = det([T ]β − tI2) = det

[
−t 0
1 −t

]
= t2

§5.4, 10 For each operator T in 6a and 6b, find the characteristic polynomial χT of T and verify that the charac-
teristic polynomial of TW (computed in 9) divides χT .

Solution. For 6a, to compute χT , the most universal way is just to use cofactor expansion to compute
the determinant. Namely, we have

χT (t) = det([T ]std − tI4) = det


1− t 1 0 0

0 1− t −1 0
1 0 1− t 0
1 0 0 1− t


which isn’t too bad. Cofactor expanding along the fourth column, we get

χT (t) = (1− t) det

 1− t 1 0
0 1− t −1
1 0 1− t


Cofactor expanding this determinant along the bottom row, we get

χT (t) = (1− t)
(
1 · det

[
1 0

1− t −1

]
+ (1− t) det

[
1− t 1

0 1− t

])
· · · = (1− t)(−1 + (1− t)(1− t)2) = (1− t)(−1 + 1− 3t+ 3t2 − t3) = (1− t)(−3t+ 3t2 − t3)

· · · = −3t+ 3t2 − t3 + 3t2 − 3t3 + t4 = −3t+ 6t2 − 4t3 + t4 = t(−3 + 6t− 4t2 + t3)

Using polynomial long division (see Appendix E, for example), we can find that

t3 − 4t2 + 6t− 3

t2 − 3t+ 3
= t− 1, so (t3 − 4t2 + 6t− 3) = (t− 1)(t2 − 3t+ 3)

(One can also find t− 1 as a quotient if you notice that 1 is a root of t3 − 4t2 + 6t− 3) It follows that

χT = t(t3 − 4t2 + 6t− 3) = (t− 1) · χT〈e1〉T
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as desired.

For 6b, to compute χT , again we can use cofactor expansion. Namely, using the standard basis std =
{1, x, x2, x3}, we have

χT (t) = det([T ]std − tI4) = det


−t 1 0 0
0 −t 2 0
0 0 −t 3
0 0 0 −t


This is upper triangular, so its determinant is just the product of the diagonal entries, so we have

χT (t) = t4

which is obviously divisible by χT〈x3〉T
= t2.

§5.4, 23 Let T be a linear operator on a finite dimensional vector space V , and let W be a T -invariant subspace
of V . Suppose that v1, v2, . . . , vk are eigenvectors of T corresponding to distinct eigenvalues. Prove that if
v1 + v2 + · · ·+ vk is in W , then vi ∈W for all i. Hint: Use mathematical induction on k.

Proof. We use induction on k. The base case k = 1 is trivial. Now assume the statement is known for
k− 1 vectors. Let λ1, . . . , λk denote the distinct eigenvalues of v1, . . . , vk. Suppose v1 + v2 + · · ·+ vk ∈W ,
then clearly

λkv1 + λkv2 + · · ·+ λkvk ∈W (2)

On the other hand, since W is T -invariant, we also have

T (v1 + · · ·+ vk) = T (v1) + · · ·+ T (vk) = λ1v1 + · · ·+ λkvk ∈W (3)

Subtracting (2) from (3), we find that

(λ1 − λk)v1 + (λ2 − λk)v2 + · · ·+ (λk−1 − λk)vk−1 ∈W

But each term (λi − λk)vi is just a nonzero scalar multiple of vi, and hence is also a λi-eigenvector. Thus
we have a sum of k− 1 eigenvectors with distinct eigenvalues which lies in W , and hence by the induction
hypothesis each must individually lie in W . Scaling as necessary, this shows that v1, v2, . . . , vk−1 ∈W . At
this point we are almost done – it remains to show that vk ∈ W . Since v1, v2, . . . , vk−1 ∈ W , their sum
v1 + v2 + · · ·+ vk−1 also lies in W . Since v1 + v2 + · · ·+ vk ∈W , we have

vk = (v1 + v2 + · · ·+ vk)− (v1 + v2 + · · ·+ vk−1) ∈W

as desired.

• (6 points) Now suppose dimV = 3. Your task is to perform the analogous classification as above in the
case dimV = 3.

– Suppose r = 3. What are the possible multiplicitiesm1,m2,m3? For each possible triple (m1,m2,m3),
list the possible dimensions of the eigenspaces E1, E2, E3. For each case, give an example of such a T
and compute its characteristic polynomial.

Solution. If r = 3, then since each mi ≥ 1, we must have m1 = m2 = m3 = 1. In this case, since
1 ≤ dimEi ≤ mi, each eigenspace has dimension dimEi = 1. An example is:

A =

 1 0 0
0 2 0
0 0 3

 χA(t) = (1− t)(2− t)(3− t)

– Suppose r = 2. What are the possible multiplicities m1,m2? For each possible pair (m1,m2), list
the possible dimensions of the eigenspaces E1, E2. For each case, give an example of such a T and
compute its characteristic polynomial.
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For this part, it is enough to consider the eigenvalues “up to permutation”. That is – you don’t need
to do the cases (m1,m2) = (1, 2) and (m1,m2) = (2, 1) separately. Just do one of them.

Solution. Since the multiplicities sum to 3, the only possibility, up to permutations, ism1 = 1,m2 = 2
. In this case we must have dimE1 = 1, but dimE2 could be either 1 or 2. In the first case, an example
is:

A =

 1 0 0
0 2 1
0 0 2

 , χA(t) = (1− t)(2− t)2

In the second case, an example is:

A =

 1 0 0
0 2 0
0 0 2


– Suppose r = 1. What are the possibilities for m1? For each possibility, list the possibilities for

the dimension of the eigenspace E1. For each possible dimension, give an example of such a T and
compute its characteristic polynomial.

Solution. Since the multiplicities sum to 3, we must have m1 = 3. Then the dimension of E1 could
be 1, 2, or 3. For dimE1 = 1, an example is:

A =

 2 1 0
0 2 1
0 0 2

 , χA(t) = (2− t)3

For dimE1 = 2, an example is

A =

 2 0 0
0 2 1
0 0 2

 , χA(t) = (2− t)3

For dimE1 = 3, an example is

A =

 2 0 0
0 2 0
0 0 2

 , χA(t) = (2− t)3

– Suppose r = 0. Is this case possible? Note that we are working over R.

Solution. This is not possible, since any odd degree polynomial over R has at least one root in R.
Phrased in another way, every linear operator on an odd-dimensional vector space over R has at least
one eigenvalue. Note that this statement is false for even-dimensional vector spaces. For example,[

0 1
−1 0

]
over R has no eigenvalues.

Hint. In the case r = 3, there is just one possibility for the multiplicities and dimensions of eigenspaces.
In the case r = 2, there are, in total, 2 possibilities up to permutation of the eigenvalues. In the case
r = 1, there are 4 possibilities. When looking for examples, it may help to consider upper triangular or
block-diagonal matrices.
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