MATH 350 Linear Algebra Homework 8

Instructor: Will Chen

November 8, 2022

Problems

Book Problems

- Section 5.4, Problem 1 (parts a,b,c,d). One point per part, 4 points total.
- Section $5.4,2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}, 3 \mathrm{~b}, 3 \mathrm{c}, 6 \mathrm{a}, 6 \mathrm{~b}, 9$ (for $6 \mathrm{a}, 6 \mathrm{~b}$), 10 (for $6 \mathrm{a}, 6 \mathrm{~b}$), 23. Two points each, 20 points total.

Additional Problems Let V be a finite dimensional vector space over \mathbb{R} and let $T: V \rightarrow V$ be linear. Let $\lambda_{1}, \ldots, \lambda_{r}$ be the distinct roots of the characteristic polynomial $\chi_{T}(t)$, with corresponding multiplicities m_{1}, \ldots, m_{r} and eigenspaces $E_{1}, \ldots, E_{r} \subset V$. In other words, we can write the characteristic polynomial as

$$
\begin{equation*}
\chi_{T}(t)=\left(\lambda_{1}-t\right)^{m_{1}} \cdots\left(\lambda_{r}-t\right)^{m_{r}} g(t) \tag{1}
\end{equation*}
$$

where $g(t)$ is either 1 or a polynomial of degree ≥ 2. Since $\operatorname{deg} \chi_{T}=\operatorname{dim} V$ we have $0 \leq r \leq \operatorname{dim} V$, and $\sum_{i=1}^{r} m_{i} \leq \operatorname{dim} V$.

- In the case where $\operatorname{dim} V=2$, we must have $0 \leq r \leq 2$. In the last homework, we tested various linear operators T for diagonalizability. Here is a classification of the possible situations one can encounter when in the case $\operatorname{dim} V=2$.
- Suppose $r=2$. This means there are two eigenvalues λ_{1}, λ_{2}, so the characteristic polynomial is split. Since the muliplicities are all at least 1 and their sum is $\leq \operatorname{dim} V=2$, the only possibility for the multiplicities are $m_{1}=m_{2}=1$. Since $1 \leq \operatorname{dim} E_{i} \leq m_{i}=1$ for $i=1,2$, it follows that $\operatorname{dim} E_{i}=m_{i}$ for $i=1,2$. In this case T is diagonalizable. An example of this situation is

$$
T=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \quad \chi_{T}(t)=(t-1)(t-2), \quad \operatorname{dim} E_{1}=\operatorname{dim} E_{2}=1=m_{1}=m_{2}
$$

- Suppose $r=1$. This means there is exactly one eigenvalue λ_{1}. Since $\chi_{T}(t)$ is degree 2 , this means λ_{1} must have multiplicity $m_{1}=2$ (or else there would be two eigenvalues). In this case we have $1 \leq \operatorname{dim} E_{1} \leq 2$. If $\operatorname{dim} E_{1}=1$, then T is not diagonalizable. An example is

$$
T=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad \chi_{T}(t)=(t-1)^{2}, \quad \operatorname{dim} E_{1}=1<m_{1}=2
$$

If $\operatorname{dim} E_{1}=2$, then T is diagonalizable. An example is

$$
T=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \chi_{T}(t)=(t-1)^{2}, \quad \operatorname{dim} E_{1}=1=m_{1}=1
$$

- Suppose $r=0$. This means there are no eigenvalues, and hence T is not diagonalizable. An example of this situation is:

$$
T=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad \chi_{T}(t)=t^{2}+1
$$

- (6 points) Now suppose $\operatorname{dim} V=3$. Your task is to perform the analogous classification as above in the case $\operatorname{dim} V=3$.
- Suppose $r=3$. What are the possible multiplicities m_{1}, m_{2}, m_{3} ? For each possible triple (m_{1}, m_{2}, m_{3}), list the possible dimensions of the eigenspaces E_{1}, E_{2}, E_{3}. For each case, give an example of such a T and compute its characteristic polynomial.
- Suppose $r=2$. What are the possible multiplicities m_{1}, m_{2} ? For each possible pair $\left(m_{1}, m_{2}\right)$, list the possible dimensions of the eigenspaces E_{1}, E_{2}. For each case, give an example of such a T and compute its characteristic polynomial.

For this part, it is enough to consider the eigenvalues "up to permutation". That is - you don't need to do the cases $\left(m_{1}, m_{2}\right)=(1,2)$ and $\left(m_{1}, m_{2}\right)=(2,1)$ separately. Just do one of them.

- Suppose $r=1$. What are the possibilities for m_{1} ? For each possibility, list the possibilities for the dimension of the eigenspace E_{1}. For each possible dimension, give an example of such a T and compute its characteristic polynomial.
- Suppose $r=0$. Is this case possible? Note that we are working over \mathbb{R}.

Hint. In the case $r=3$, there is just one possibility for the multiplicities and dimensions of eigenspaces. In the case $r=2$, there are, in total, 2 possibilities up to permutation of the eigenvalues. In the case $r=1$, there are 4 possibilities. When looking for examples, it may help to consider upper triangular or block-diagonal matrices.

