
MATH 350 Linear Algebra
Homework 7 Solutions

Instructor: Will Chen

November 8, 2022

Problems
Book Problems 2 points each, 26 points total

• Section 5.1, Problems 4(d), 5(b), 5(f), 9(a), 9(b), 10

• Section 5.2, Problems 2(b), 2(d), 3(d), 9(b), 11(a), 11(b), 13

For 11(a), recall that tr(A) denotes the trace of the matrix A, which is defined to be the sum of the diagonal
entries.

Additional Problems (2 points each, 4 points total)

• For each of the following matrices A ∈ M2(F ), determine all eigenvalues of A. Then, for each eigenvalue
λ of A, find the set of eigenvectors corresponding to λ. Then, if possible, find a basis for Fn consisting of
eigenvectors of A. If successful in finding such a basis, determine an invertible matrix Q and a diagonal
matrix D such that Q−1AQ = D.

Do the above for the “rotation by 60◦ matrix” A =

[
1
2 −

√
3
2√

3
2

1
2

]
with F = R. Then do the above for the

same matrix but with F = C.

• Suppose A,B ∈Mn(F ) are similar. Recall that this means that there is an invertible matrix Q such that
B = QAQ−1. Prove that χA(t) = χB(t).

Solutions
In my solutions, any solution which says anything to the effect of "details omitted" is not a complete solution –
in your writeup you would be expected to fill in the details. Otherwise, you can treat the solution as an example
of something that would earn you full credit. However some solutions include more detail than is necessary.

In general, solutions may have typos/errors. I guarantee that by the end of the semester there
will be at least one typo. Please let me know ASAP if you find any, so I can correct it.

§5.1, 4d For the matrix

A =

 2 0 −1
4 1 −4
2 0 −1


(i) Determine all eigenvalues of A, (ii) For each eigenvalue λ of A, find the set of eigenvectors corresponding
to λ, (iii) If possible, find a basis for Fn consisting of eigenvectors of A, (iv) If successful in finding such a
basis, determine an invertible matrix Q and a diagonal matrix D such that Q−1AQ = D.
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Solution. The characteristic polynomial is:

χA(t) = det

 2− t 0 −1
4 1− t −4
2 0 −1− t

 = 2(1− t) + (−1− t)(2− t)(1− t) = (1− t)(t2 − t) = −t(t− 1)2

Thus, the eigenvalues of A are 0 (multiplicity 1) and 1 (multiplicty 2). For the eigenvalue 0, the eigenspace
E0 is 1-dimensional (since it has multiplicity 1), and hence it is easy to see that

E0 = N(A) = Span


 1

4
2


Thus the set of eigenvectors for the eigenvalue 0 are the nonzero vectors in E0, or equivalently, the nonzero
scalar multiples of (1, 4, 2).

For the eigenvalue 1, the eigenspace E1 has dimension at least 1 and at most 2 (the multiplicity). To
calculate the eigenspace, we have

E1 = N(A− I) = N

 1 0 −1
4 0 −4
2 0 −2


Clearly this matrix has column rank 1, and we have

E1 = Span


 0

1
0

 ,
 1

0
1


Thus the eigenvectors for the eigenvalue 1 are the nonzero vectors in E1, or equivalently the nonzero linear
combinations of (0, 1, 0) and (1, 0, 1).

Remark. At this point, we can pause and notice that our calculations of E0 and E1 are consistent with
our calculation of the characteristic polynomial. For example, if 0,1 were not roots of the characteristic
polynomial, then N(A) and N(A − I) would have been both zero. In fact since E1 = N(A − I) is 2-
dimensional, this implies that the characteristic polynomial must have the root 1 as a root of multiplicity
at least 2. Since E0 is 1-dimensional, the characteristic polynomial must the root 0 as a root of multiplicity
at least 1. Since the characteristic polynomial has degree 3 and the leading term has coefficient (−1)3, it
follows that the characteristic polynomial must be −t(t− 1)2, agreeing with our calculation.

Continuing with the solution, we have found bases for E0 and E1. By theorem 5.5 in the book, the union
of these bases is a basis for F 3. Namely, an eigenbasis is given by

β =


 1

4
2

 ,
 0

1
0

 ,
 1

0
1


Write β1, β2, β3 for the vectors in β, with eigenvalues λ1 = 0, λ2 = λ3 = 1. Let

Q :=

 1 0 1
4 1 0
2 0 1


then since each column is an eigenvector for A, we have

Q−1AQei = Q−1Aβi = Q−1λiβi = λiQ
−1βi = λiei

It follows that Q−1AQ is diagonal with entries 0, 1, 1. I.e.,

Q−1AQ =

 0 0 0
0 1 0
0 0 1

 =: D
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Remark. Note, importantly (as in the solution to Quiz 7) that the invertible matrix Q is not unique.
There are many other matrices Q′ such that (Q′)−1AQ′ is diagonal. For example, one can permute the
columns of Q, or scale the columns by scalars. One can even replace the second two columns with any
other eigenbasis of E1.

§5.1, 5b Let T : R3 → R3 be given by

T (a, b, c) = (7a− 4b+ 10c, 4a− 3b+ 8c,−2a+ b− 2c)

Find the eigenvalues of T and an ordered basis β for R3 such that [T ]β is a diagonal matrix.

Solution. The matrix of T (w.r.t. the standard basis) is

[T ] =

 7 −4 10
4 −3 8
−2 1 −2


The characteristic polynomial of T is

χT (t) = det(T − tI) = det([T ]− tI3) = det

 7− t −4 10
4 −3− t 8
−2 1 −2− t


· · · = −2(−32−10(−3−t))−1(8(7−t)−40)+(−2−t)((7−t)(−3−t)+16) = 64−60−20t−56+8t+40+(−2−t)(t2−4t−5)

· · · = −12− 12t+ (−t3 + 2t2 + 13t+ 10) = −t3 + 2t2 + t− 2

By trial and error, one can check that t = 1 is a root, so t− 1 is a factor of χT (t). Using polynomial long
division (or just solving the equation (t− 1)(at2 + bt+ c) = χT (t), we find that χT (t)

t−1 = −(t2 − t− 2), so
we have

χT (t) = −(t− 1)(t2 − t− 2) = −(t− 1)(t− 2)(t+ 1)

It follows that the eigenvalues are 1,2,-1, each having multiplicity 1. The 1-eigenspace is

E1 = N

 6 −4 10
4 −4 8
−2 1 −3

 = Span


 1
−1
−1


Similarly, the 2-eigenspace is

E2 = N

 5 −4 10
4 −5 8
−2 1 −4

 = Span


 2

0
−1


Finally, the (−1)-eigenspace is

E−1 = N

 8 −4 10
4 −2 8
−2 1 −1

 = Span


 1

2
0


It follows that we can take β to be any basis whose elements are nonzero vectors in E1, E2, E−1, in any
order. For example, we can take

β =


 1
−1
−1

 ,
 2

0
−1

 ,
 1

1
0
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§5.1, 5f Let V = P3(R) and T : P3(R)→ P3(R) be given by

T (f(x)) = f(x) + f(2)x

Find the eigenvalues of T and an ordered basis β for P3(R) such that [T ]β is diagonal.

Solution. Relative to the standard basis {1, x, x2, x3} of P3(R), the matrix of T is

[T ]std =


1 0 0 0
1 3 4 8
0 0 1 0
0 0 0 1


The characteristic polynomial is

χT (t) = χT ([T ]std) = det([T ]std − tI4) = det




1− t 0 0 0
1 3− t 4 8
0 0 1− t 0
0 0 0 1− t




Cofactor expanding along the bottom row repeatedly, we get

χT (t) = (1− t)(1− t)(3− t)(1− t)

So the eigenvalues of T are 1 (with multiplicity 3) and 3 (with multiplicity 1). To find the eigenspaces, we
can work in R4, viewing a general vector a + bx + cx2 + dx3 ∈ P3(R) as the vector (a, b, c, d) ∈ R4. The
1-eigenspace, viewed as a subspace of R4, is given by

E1 = N




0 0 0 0
1 2 4 8
0 0 0 0
0 0 0 0


 = Span



−2
1
0
0

 ,

−4
0
1
0

 ,

−8
0
0
1




Viewed inside P3(R), this implies that {x− 2, x2 − 4, x3 − 8} ⊂ P3(R) is a basis of the 1-eigenspace of T .
That these vectors lie in the 1-eigenspace is easily verified using the definition of T .

The 3-eigenspace, viewed as s subspace of R4, is given by

E3 = N



−2 0 0 0
1 0 4 8
0 0 −2 0
0 0 0 −2


 = Span




0
1
0
0




Viewed inside P3(R), this implies that {x} is a basis for the 3-eigenspace. Again this is easily checked from
the definition of T . It follows that one can take β to be {x, x− 2, x2 − 4, x3 − 8}.

§5.1, 9a Prove that a linear operator T on a finite dimensional vector space is invertible if and only if zero is not
an eigenvalue of T .

Proof 1. Let T : V → V be linear, with dimV < ∞. If 0 is an eigenvalue of T , then by definition there
exists a nonzero vector v such that T (v) = 0v = 0. This implies that T has positive nullity, so it is not
invertible. Conversely, if T is not invertible, then N(T ) is not the zero space, so there is a nonzero vector
v ∈ N(T ). I.e., v 6= 0, and T (v) = 0 = 0v, but this says exactly that v is an eigenvector of T with
eigenvalue 0, so 0 is an eigenvalue of T .

Proof 2. Here is another proof: Zero is an eigenvalue of T if and only if 0 is a root of χT (t) = det(T − tI),
but that is the same as saying that det(T − 0I) = det(T ) = 0, which is the same as saying that T is not
invertible.
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§5.1, 9b Let T be an invertible linear operator. Prove that a scalar λ is an eigenvalue of T if and only if λ−1 is an
eigenvalue of T−1.

Proof. Let T : V → V be invertible. If λ is an eigenvalue of T , then there is a nonzero v ∈ V such that
Tv = λv, so v = T−1Tv = T−1λv = λT−1v. Multiplying both sides by λ−1, we have λ−1v = T−1v. Since
v 6= 0, this says exactly that λ−1 is an eigenvalue of T−1.

For the converse, suppose λ−1 is an eigenvalue of T−1. This means that there is a nonzero v ∈ V ,
T−1v = λ−1v. Thus v = TT−1v = Tλ−1v = λ−1Tv. Multiplying both sides by λ, we get λv = Tv. Again
since v 6= 0, this says that λ is an eigenvalue of T .

§5.1, 10 Prove that the eigenvalues of an upper triangular matrix M are the diagonal entries of M .

Proof. Suppose M is n × n and upper triangular. Its diagonal entries are M11,M22, . . . ,Mnn. Then its
characteristic polynomial is χM (t) = det(M − tI). Since M − tI is also upper-triangular, det(M − tI) is
just the product of the diagonal entries of M − tI, which is just M11 − t,M22 − t, . . . ,Mnn − t. Thus the
characteristic polynomial of M is

χM (t) = det(M − tI) = (M11 − t)(M22 − t) · · · (Mnn − t)

The roots of χM (t) are clearly just M11,M22, . . . ,Mnn. On the other hand, the roots of χM (t) are also the
eigenvalues of M , so it follows that the eigenvalues of M are exactly the diagonal entries of M .

§5.2, 2b For the matrix A = [ 1 3
3 1 ], test A for diagonalizability, and if it is diagonalizable, find an invertible matrix

Q and a diagonal matrix D such that Q−1AQ = D.

Solution. The characteristic polynomial is

χA(t) = det

[
1− t 3

3 1− t

]
= (1− t)2 − 9 = t2 − 2t− 8 = (t− 4)(t+ 2)

Thus the eigenvalues are 4, -2, each of multiplicity 1. It follows that A is diagonalizable. The 4-eigenspace
is

E4 = N

([
−3 3
3 −3

])
= Span

{[
1
1

]}
and

E−2 = N

([
3 3
3 3

])
= Span

{[
1
−1

]}
Thus one can take

Q =

[
1 1
1 −1

]
in which case we have

Q−1AQ = D :=

[
4 0
0 −2

]
§5.2, 2d For the matrix

A =

 7 −4 0
8 −5 0
6 −6 3


Test A for diagonalizability, and if it is diagonalizable, find an invertible Q and diagonal D such that
Q−1AQ = D. Solution. The characteristic polynomial is

χA(t) = det

 7− t −4 0
8 −5− t 0
6 −6 3− t


Cofactor expanding along the third column, we get

χA(t) = (3− t)((7− t)(−5− t) + 32) = (3− t)(t2 − 2t− 3) = (3− t)(t− 3)(t+ 1)
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Thus the eigenvalues are 3 (multiplicity 2) and -1 (multiplicity 1). The 3-eigenspace is

E3 = N

 4 −4 0
8 −8 0
6 −6 0

 = Span


 1

1
0

 ,
 0

0
1


The (−1)-eigenspace is

E−1 = N

 8 −4 0
8 −4 0
6 −6 4

 = Span


 2

4
3


Since dimE3 is equal to the multiplicity, we can take

Q =

 1 0 2
1 0 4
0 1 3


In which case we have

Q−1AQ = D :=

 3 0 0
0 3 0
0 0 −1


§5.2, 3d For the linear operator T : P2(R)→ P2(R) given by T (f(x)) = f(0) + f(1)(x+ x2), test T for diagonaliz-

ability, and if it is diagonalizable, find a basis β such that [T ]β is a diagonal matrix.

Proof. Using the standard basis std = {1, x, x2} of P2(R), the matrix of T is

[T ]std =

 1 0 0
1 1 1
1 1 1


Thus the characteristic polynomial of T is

χT (t) = χ[T ]std(t) = det([T ]std − tI3) = det

 1− t 0 0
1 1− t 1
1 1 1− t


Cofactor expanding along the top row, we find that

χT (t) = (1− t)((1− t)2 − 1) = (1− t)(t2 − 2t) = (1− t)t(t− 2)

It follows that the eigenvalues are 1, 0, 2, each of multiplicity 1. Thus T is diagonalizable. The eigenspaces
are:

E1 = N

 0 0 0
1 0 1
1 1 0

 = Span


 −11

1


E0 = N([T ]std) = Span


 0

1
−1


E2 = N

 −1 0 0
1 −1 1
1 1 −1

 = Span


 0

1
1


Thus we can take

Q =

 −1 0 0
1 1 1
1 −1 1
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in which case

Q−1AQ = D :=

 1 0 0
0 0 0
0 0 2



§5.2, 9b Let T be a linear operator on a finite-dimensioanl vector space V , and suppose there exists an ordered basis
β for V such that [T ]β is an upper-triangular matrix. Part (a) asks you to prove that the characteristic
polynomial for T splits. For this problem (part b), your task is to state and prove an analogous result for
matrices.

Solution. The analogous statement is as follows: Let A be an n × n matrix, and suppose there is an
invertible matrix Q such that Q−1AQ is upper-triangular. Then χA(t) splits.

Proof. Let d1, d2, . . . , dn denote the diagonal entries of Q−1AQ. Since Q−1AQ is upper-triangular, so is
Q−1AQ− tI, so χQ−1AQ(t) = det(Q−1AQ− tI) is just the product of the diagonal entries of Q−1AQ− tI,
but its diagonal entries are precisely d1 − t, d2 − t, . . . , dn − t. Then

χQ−1AQ(t) = det(Q−1AQ− tI) = (d1 − t)(d2 − t) · · · (dn − t)

It follows that the characteristic polynomial of Q−1AQ is split, with roots d1, d2, . . . , dn. On the other
hand, by the second “additional problem”, we have χQ−1AQ(t) = χA(t). Thus since χQ−1AQ(t) is split, so
is χA(t).

§5.2, 11a Let A be an n × n matrix that is similar to an upper triangular matrix and has the distinct eigenvalues
λ1, λ2, . . . , λk with corresponding multiplicities m1,m2, . . . ,mk. Prove that tr(A) =

∑k
i=1miλi.

Here, recall that tr(A) denotes the sum of the diagonal entries of A. I.e., tr(A) =
∑n
i=1Aii.

Solution 1. By hypothesis, there is an invertible matrix Q such that Q−1AQ is upper triangular. By
§5.2 9b, this implies that χA(t) splits, so its roots are λ1, . . . , λk, with λi appearing mi times. Denoting
these roots as a1, . . . , an (not all distinct), write det(A− tI) = χA(t) = (a1 − t)(a2 − t) · · · (an − t), so that∑k
i=1miλi =

∑n
i=1 ai. Let us consider the coefficient of tn−1.

On the one hand, from the expansion χA(t) = (a1− t) · · · (an− t), we find that the this coefficient is exactly
(−1)n−1

∑n
i=1 ai.

On the other hand, in the cofactor expansion of det(A− tI) = χA(t) along the first row, we have det(A−
tI) =

∑n
j=1(−1)1+j(A − tI)ij det(Ã− tI)1j . In this expansion, for each term j > 1, (A − tI)ij does not

involve any t’s (so it is degree 0), and the submatrix (Ã− tI)1j leaves out both (A− tI)11 and (A− tI)jj ,
so t appears in this submatrix at most n − 2 times, and so its determinant has degree at most n − 2.
Thus, for each j > 1, the jth term in the cofactor expansion of det(A − tI) has at most degree n − 2. It
follows that only the first term (A− tI)11 det(Ã− tI)11 contributes to the coefficient of tn−1. By induction
on n (noting that (Ã− tI)11 is an (n − 1) × (n − 1) matrix), we find that this coefficient is precisely
(−1)n−1

∑n
i=1Aii = (−1)n−1 tr(A). It follows that we have

tr(A) =

n∑
i=1

ai =

k∑
i=1

miλi

as desired.

Solution 2. Alternatively, we can use the fact that the trace of similar matrices are the same. If you don’t
know this already, we can prove it:

Lemma 0.0.1. For any X,Y ∈Mn(F ), tr(XY ) = tr(Y X).
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Proof. Indeed, the diagonal entries of XY, Y X are:

(XY )ii =

n∑
j=1

XijYji (Y X)ii =

n∑
j=1

YijXji =

n∑
j=1

XjiYij

Thus, summing over all i = 1, 2, . . . , n we get

tr(XY ) =

n∑
i=1

(XY )ii =

n∑
i=1

n∑
j=1

XijYji =

n∑
i=1

n∑
j=1

XjiYij =

n∑
i=1

(Y X)ii = tr(Y X)

Here, in the third equality, we have used the observation that in both cases we are summing XabYba for all
a, b between 1 and n.

Corollary 0.0.2. For any Y ∈ Mn(F ) and any invertible matrix X ∈ Mn(F ), we have tr(XYX−1) =
tr(Y ). In other words, similar matrices have the same trace.

Proof. Group XYX−1 as (XY )X−1. Then by the lemma, we have

tr(XYX−1) = tr((XY )X−1) = tr(X−1(XY )) = tr(Y )

as desired.

Proof of §5.2, 11a. By hypothesis, there is an invertible matrix Q such that Q−1AQ is upper triangular.
By the second additional problem, the characteristic polynomial of A is the same as that of Q−1AQ,
so they have the same eigenvalues (with the same multiplicities). By §5.1 Problem 10, since Q−1AQ is
upper-triangular, the eigenvalues of Q−1AQ are exactly the diagonal entries, with λi appearing mi times.
It follows that tr(Q−1AQ) =

∑k
i=1miλi. By the corollary, this also shows that tr(A) =

∑k
i=1miλi as

desired.

§5.2, 11b With the same assumptions as in 11a, show that det(A) = λm1
1 λm2

2 · · ·λ
mk

k .

By hypothesis, there is an invertible matrix Q such that Q−1AQ is upper triangular. By the second
additional problem, the characteristic polynomial of A is the same as that of Q−1AQ, so they have the same
eigenvalues λ1, . . . , λk (with the same multiplicitiesm1, . . . ,mk). By §5.1 Problem 10, the eigenvalues of the
upper triangular matrix Q−1AQ are exactly the diagonal entries with each λi appearing mi times. On the
other hand, since Q−1AQ is upper-triangular, det(Q−1AQ) is the product of the diagonal entries, and hence
is equal to the product of the eigenvalues of Q−1AQ (or equivalently those of A) with multiplicity. Since
determinants of similar matrices are the same, we conclude that det(A) = det(Q−1AQ) = λm1

1 λm2
2 · · ·λ

mk

k

as desired.

§5.2, 13 Let T be an invertible linear operator on a finite dimensional vector space V .

(a) Recall that for any eigenvalue λ of T , λ−1 is an eigenvalue of T−1. Prove that the eigenspace of T
corresponding to λ is the same as the eigenspace of T−1 corresponding to λ−1.

Proof. The eigenspace of T corresponding to λ is ET,λ = N(T − λI) = {v ∈ V | Tv = λv}. In
other words, a vector v ∈ V lies in ET,λ if and only if Tv = λv. Similarly, the eigenspace of T−1
corresponding to λ−1 is ET−1,λ−1 = N(T−1 − λ−1I). Thus we wish to show that

N(T − λI) = N(T−1 − λ−1I)

Indeed, since λ−1T−1 is an invertible linear transformation (with inverse λT ), we have

(T − λI)v = 0 ⇐⇒ (λ−1T−1)(T − λI)v = 0

But this is the same as saying...

· · · ⇐⇒ (λ−1T−1T − λ−1T−1λI)v = 0 ⇐⇒ (λ−1I − T−1)v = 0 ⇐⇒ (T−1 − λ−1I)v = 0

where in the last equivalence we have used the fact that T−1 − λ−1I = −(λ−1I − T−1).
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(b) Prove that if T is diagonalizable, then T−1 is also diagonalizable.

Proof. If T is diagonalizable, this means that there is a basis β for V such that [T ]β is diagonal. But
then In = [I]β = [TT−1]β = [T ]β [T

−1]β . This shows that [T−1]β is the matrix inverse of the diagonal
matrix [T ]β . Since inverses of diagonal matrices are diagonal (the diagonal entries of the inverse are
just the inverses of the diagonal entries of the original matrix), this shows that [T−1]β is diagonal, so
T−1 is diagonalizable!

• For each of the following matrices A ∈ M2(F ), determine all eigenvalues of A. Then, for each eigenvalue
λ of A, find the set of eigenvectors corresponding to λ. Then, if possible, find a basis for Fn consisting of
eigenvectors of A. If successful in finding such a basis, determine an invertible matrix Q and a diagonal
matrix D such that Q−1AQ = D.

Do the above for the “rotation by 60◦ matrix” A =

[
1
2 −

√
3
2√

3
2

1
2

]
with F = R. Then do the above for the

same matrix but with F = C.

Solution. The characteristic polynomial is

χA(t) =

(
1

2
− t
)2

+
3

4
= t2 − t+ 1

By the quadratic formula, this has no roots over R, and hence χA(t) is not split over R, so A is not
diagonalizable over R. Over C, this has the roots:

1

2
±
√
3

2
i

each with multiplicity 1. It follows that A is diagonalizable over C. Explicit eigenbases are:

E1/2+
√
3i/2 = N

([
−
√
3
2 i −

√
3
2√

3
2 −

√
3
2 i

])
= Span

{[
i
1

]}

E1/2−
√
3i/2 = N

([ √
3
2 i −

√
3
2√

3
2

√
3
2 i

])
= Span

{[
i
−1

]}
Thus, we can take

Q =

[
i i
1 −1

]
in which case we have

Q−1AQ =

[
1
2 +

√
3
2 i 0

0 1
2 −

√
3
2 i

]

• Suppose A,B ∈Mn(F ) are similar. Recall that this means that there is an invertible matrix Q such that
B = QAQ−1. Prove that χA(t) = χB(t).

Proof. We have the following chain of equalities (explained below):

χQAQ−1(t) = det(QAQ−1 − tI) = det(QAQ−1 −QtIQ−1) = det(Q(A− tI)Q−1) = det(A− tI) = χA(t)

These equalities are not totally obvious. For the second equality we have used the fact that t represents
a scalar, so QtIQ−1 = tQIQ−1 = tQQ−1 = tI. For the fourth equality, we have used the fact that
determinants of similar matrices are the same.
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