MATH 350 Linear Algebra Homework 7

Instructor: Will Chen

November 1, 2022

Problems

Book Problems 2 points each, 26 points total

- Section 5.1, Problems 4(d), 5(b), 5(f), 9(a), 9(b), 10
- Section 5.2, Problems 2(b), 2(d), 3(d), 9(b), 11(a), 11(b), 13

For 11(a), recall that $\operatorname{tr}(A)$ denotes the trace of the matrix A, which is defined to be the sum of the diagonal entries.

Additional Problems (2 points each, 4 points total)

- For each of the following matrices $A \in M_{2}(F)$, determine all eigenvalues of A. Then, for each eigenvalue λ of A, find the set of eigenvectors corresponding to λ. Then, if possible, find a basis for F^{n} consisting of eigenvectors of A. If successful in finding such a basis, determine an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$.

Do the above for the "rotation by 60° matrix" $A=\left[\begin{array}{rr}\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]$ with $F=\mathbb{R}$. Then do the above for the same matrix but with $F=\mathbb{C}$.

- Suppose $A, B \in M_{n}(F)$ are similar. Recall that this means that there is an invertible matrix Q such that $B=Q A Q^{-1}$. Prove that $\chi_{A}(t)=\chi_{B}(t)$.

