
MATH 350 Linear Algebra
Homework 6 Solutions

Instructor: Will Chen

October 31, 2022

Problems
Book Problems 2 points each, 20 points total

§4.2, 7 Evaluate the determinant of the matrix

A =

 0 1 2
−1 0 −3
2 3 0


by cofactor expansion along the second row.

Solution. Cofactor expansion along the second row gives:

detA = (−1)2+1 · (−1) · det [ 1 2
3 0 ] + (−1)2+2 · 0 · det [ 0 2

2 0 ] + (−1)2+3 · (−3) · det [ 0 1
2 3 ] = −6 + 0− 6 = −12

Note that because we’re expanding along the second row, the terms have alternating signs, starting with
a negative!

§4.2, 8 Evaluate the determinant of the matrix

A =

 1 0 2
0 1 5
−1 3 0


by cofactor expansion along the third row.

Solution. Cofactor expansion along the third row gives

detA = (−1)3+1 · (−1) · det [ 0 2
1 5 ] + (−1)3+2 · 3 · det [ 1 2

0 5 ] + (−1)3+3 · 0 · det [ 1 0
0 1 ] = 2− 15 + 0 = −13

§4.2, 14 Evaluate the determinant of the matrix

A =

 2 3 4
5 6 0
7 0 0


Solution. Since the third column and third row has lots of zeros, a fast method is to cofactor expand
along the third column or row. If we expand lalong the third row, we get:

detA = (−1)3+1 · 7 · det [ 3 4
6 0 ] = 7 · (−24) = −168

1



§4.2, 18 Evaluate the determinant of the matrix

A =

 1 −2 3
−1 2 −5
3 −1 2


Solution mixing elementary row operations with cofactor expansion: In this case, there are very
few zeros, so cofactor expansion isn’t very fast. Let’s illustrate the row-reduction method. Adding the first
row to the second, we get

L21(1)A =

 1 −2 3
0 0 −2
3 −1 2


We could continue with the row-reduction method, but in this case we already have a row/column with
lots of zeros. Cofactor expansion along the second row gives:

det(L21(1)(A)) = 0 + 0 + (−1)2+3 · (−2) · det
[
1 −2
3 −1

]
= 2 · (−1 + 6) = 10

Since detL21(1) = 1, we have

det(L21(1)(A)) = detL21(1) detA = 1 · detA = detA

Thus we have detA = 10.

Solution using only elementary row operations Alternatively, we can use only elementary row oper-
ations. The purpose is to use elementary row operations to get to a matrix whose determinant is easy to
calculate, and then to use multiplicativity of the determinant to compute the matrix of A.

L31(−3)L21(1)A =

 1 −2 3
0 0 −2
0 5 −7



T23L31(−3)L21(1)A =

 1 −2 3
0 5 −7
0 0 −2


Note that if we want to use the fact that the determinant of upper triangular matrices are just the product of
the diagonal entries, then we could essentially stop here, and we would get detT23 detL31(−3) detL21(1) detA =
−10, so detA = 10. Alternatively, we can continue row reducing...

D3(−1/2)D2(1/5)T23L31(−3)L21(1)A =

 1 −2 3
0 1 −7/5
0 0 1



L12(2)D3(−1/2)D2(1/5)T23L31(−3)L21(1)A =

 1 0 1/5
0 1 −7/5
0 0 1


L13(−1/5)L12(2)D3(−1/2)D2(1/5)T23L31(−3)L21(1)A =

 1 0 0
0 1 −7/5
0 0 1


L23(7/5)L13(−1/5)L12(2)D3(−1/2)D2(1/5)T23L31(−3)L21(1)A =

 1 0 0
0 1 0
0 0 1


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Thus we find that the determinant of the product of matrices on the left is 1. Let detLij(a) = 1, by
multiplicativity we have

detD3(−1/2)︸ ︷︷ ︸
−1/2

detD2(1/5)︸ ︷︷ ︸
1/5

detT23︸ ︷︷ ︸
−1

detA = det I = 1

It follows that detA = 10.

§4.2, 23 Prove that the determinant of an upper triangular matrix is the product of its diagonal entries.

Proof. We prove this by induction on the size. Let P (n) be the statement: “the determinant of an n × n
upper triangular matrix is the product of its diagonal entries”. We wish to prove P (n) for all n ≥ 1. The
base case P (1) is easy. Now suppose that P (n− 1) holds (the inductive hypothesis). We now prove P (n).
Let A be an n× n upper triangular matrix. Since the bottom row has only one nonzero entry, in the nth
position, cofactor expansion along the bottom row gives

detA = (−1)n+nAnn det Ãnn = Ann det Ãnn

Since Ãnn is an (n − 1) × (n − 1) matrix, by the inductive hypothesis (i.e., by P (n − 1)), we know that
det Ãnn is the product of the diagonal entries of Ãnn. However the diagonal entries of Ãnn are just the
diagonal entries of A with the nth entry omitted, so we have

det Ãnn =

n−1∏
i=1

Aii

It follows that detA = Ann
∏n−1
i=1 Aii =

∏n
i=1Aii, which shows that detA is the product of its diagonal

entries. This proves P (n), and hence by induction we have proved P (n) for all n.

§4.3, 12 A matrix Q ∈Mn(R) is called orthogonal if QQt = I. Prove that if Q is orthogonal, then detQ = ±1.

Proof. Taking determinants, we have det(QQt) = det(I) = 1. On the other hand, by the multiplicativity
of det, we have det(QQt) = det(Q) det(Qt). By Theorem 4.8 in the book, det(Qt) = det(Q), so we have
det(Q) det(Q) = det(Q) det(Qt) = det(QQt) = det(I) = 1. In other words, we have det(Q)2 = 1. Since
det(Q) ∈ R and the only real numbers with square 1 are ±1, it follows that det(Q) = ±1.

Warning. Note that the converse is not true. A matrix of determinant ±1 need not be orthogonal!

§4.3, 15 Prove that if A,B ∈Mn(F ) are similar, then det(A) = det(B).

Proof. If A,B are similar, then this means that there is an invertible matrix Q such that A = QBQ−1.
Taking determinants, we get

detA = det(QBQ−1) = detQ · detB · det(Q−1) = detQ · detB · (detQ)−1 = detB

In the last step, we have used that determinants are elements of F , and in F , xyx−1 = xx−1y = 1y = y.

§4.3, 24 Let A ∈Mn(F ) have the form

A =


0 0 0 · · · 0 a0
−1 0 0 · · · 0 a1
0 −1 0 · · · 0 a2
...

...
...

...
...

0 0 0 · · · −1 an−1


Compute det(A+ tI), where I is the n× n identity matrix and t is a variable.

Hints for 24: Call the given matrix An. The goal is to show that det(An + tIn) is given by the formula

tn + an−1t
n−1 + · · ·+ a1t+ a0 (1)
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To do this, use induction on n. First show that it holds for n = 1 (the “base case”). Then show that if it
holds for n − 1, then it holds for n (this part is called the “inductive step”). To prove the inductive step,
use cofactor expansion along a row.

Solution. As per the hint, we will use induction on the size of the matrix A. In the base case n = 1,
from the definition of A, we easily find det(A+ tI) = a0 + t, so the base case is satisfied. Now suppose the
formula (1) holds for n− 1 (the inductive hypothesis). We will prove that it holds for n. Let A be n× n.
It turns out the easiest way to proceed is to cofactor expand along the first row. In this case, cofactor
expansion gives:

det(A+ tI) = (−1)1+1 · t · det ˜(A+ tI)11 + (−1)1+n · a0 · det ˜(A+ tI)1n

The matrix ˜(A+ tI)11 is (n−1)×(n−1) with exactly the same form as A+tI. By the inductive hypothesis,
it follows that

det
(

˜(A+ tI)11

)
= tn−1 + an−1t

n−2 + · · ·+ a2t+ a1

The matrix ˜(A+ tI)1n is (n− 1)× (n− 1) and lower-triangular, with every diagonal entry equal to −1, so
we have

det
(

˜(A+ tI)1n

)
= (−1)n−1

Putting these last two observations together, we find that

det(A+tI) = t(tn−1+an−1t
n−2+ · · ·+a2t+a1)+(−1)1+na0(−1)n−1 = tn+an−1t

n−1+ · · ·+a2t2+a1t+a0

as desired.

§4.4, 2c Evaluate the determinant of the matrix A =
[

2+i −1+3i
1−2i 3−i

]
.

Note: We’re starting to use the field of complex numbers. See the relevant parts of Appendix D for the
arithmetic properties of complex numbers.

Solution. Since this matrix is 2 by 2, the determinant is

detA = (2+i)(3−i)−(−1+3i)(1−2i) = 6−2i+3i−i2+1−2i−3i+6i2 = 6+i−i2+1−5i+6i2 = −4i+2

§4.4, 3e Evaluate the determinant of the matrix

A =

 0 1 + i 2
−2i 0 1− i

3 4i 0


by cofactor expansion along the third row.

Solution. Cofactor expanding along the third row gives

(−1)3+1 · 3 · det
[
1+i 2
0 1−i

]︸ ︷︷ ︸
=2

+(−1)3+2 · 4i · det
[

0 2
−2i 1−i

]︸ ︷︷ ︸
=4i

Thus, detA = 6− 4i · 4i = 6 + 16 = 22.

Additional Problems (10 points total)

• Let B denote the set of all ordered bases for R3. Let L(R3) denote the set of linear transformations
R3 → R3. Let

µ : L(R3)× B × B −→M3(R)

be the map defined by µ(f, α, β) = [f ]βα. Fix α, β ∈ B. A central point of the course so far is that the map

µ(∗, α, β) : L(R3) −→ M3(R)
f 7→ [f ]βα
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Is a bijection (even, an isomorphism of vector spaces). For any fixed choices of f ∈ L(R3), β ∈ B, we obtain
a map

µf,∗,β : B −→ M3(R)
α 7→ [f ]βα

Similarly, for any choices f ∈ L(R3), α ∈ B, we have a map

µf,α,∗ : B −→ M3(R)
β 7→ [f ]βα

Note that µf,α,∗ and µf,∗,β are not linear! (the set B is not a vector space). In this exercise we will
investigate how the matrix of a linear transformation depends on the choice of basis.

(a) (2 points) Show that for any choice of f, α, µf,α,∗ is not onto.

Proof. The key point here is that f is fixed. Given a fixed linear map f , there is no unique matrix
for f (different choices of bases give different matrices), but there are certain properties of f which
are inherited by any matrix for f . One such example is the rank of f . Indeed, for any basis β ∈ B,
we have

µf,α,∗(β) = [f ]βα = [I]βstd[f ]
std
std[I]

std
α

Here, the matrices [I]βstd and [I]stdα are both change of basis matrices, and hence are invertible, so it
follows that rank(f) = rank[f ]βα for any choices of bases α, β ∈ B. Thus, for fixed f , every matrix in
the image of µf,α,∗ must have the same rank as f . Since M3(R) has matrices of every rank between
0 and 3, it follows that µf,α,∗ cannot be onto.

To be concrete, if f is invertible (i.e., rank 3), then the image of µf,α,∗ consists only of invertible
matrices (i.e., rank 3). Thus, for example, in this case the zero matrix does not lie in the image of
µf,α,∗. If f is rank 2 or 1, then again the zero matrix does not lie in the image of µf,α,∗. If f is rank
0, then the identity matrix does not lie in the image of µf,α,∗.

(b) (2 points) Show that for any choice of f, β, µf,∗,β is not onto.

Proof. For the same reason as in part (a), any matrix in the image of µf,∗,β has the same rank as f .
Since M3(R) has matrices of any rank (between 0 and 3), it follows that µf,∗,β cannot be onto.

(c) (3 points) Let α ∈ B. Show that µf,α,∗ is 1-1 if and only if f is invertible.

Hint: For (c) and (d), for the direction invertible =⇒ 1-1, you can use the fact, proven on the quiz,
that [I]γβ = In ⇐⇒ β = γ, together with the identity [fg]γα = [f ]γβ [g]

β
α. The other direction is more

subtle.

Proof. Suppose f is invertible, and suppose µf,α,∗(β) = µf,α,∗(β
′), then [f ]βα = [f ]β

′

α , but this means

[f ]βα = [f ]β
′

α = [I]β
′

β [f ]βα

Since f is invertible, so is [f ]βα, so canceling [f ]βα (i.e., right-multiplying by its inverse), we get I3 = [I]β
′

β ,
where I3 denotes the 3×3 identity matrix. From problem 1 on Quiz 6, this implies that β = β′. Thus
we’ve shown that µf,α,∗(β) = µf,α,∗(β

′) implies that β = β′. In other words, µf,α,∗ is 1-1.

Next we will show that if f is not invertible, then µf,α,∗ is not 1-1. If f is not invertible, by the
rank-nullity theorem, it has rank ≤ 2, so f is not onto. Let {β1, β2} be a basis for the image of f . By
Corollary 2 (in §1.6, p48 in the book), we can extend {β1, β2} to a basis for R3. Let β3 be the third
member of such an extension. Note that such extensions are never unique! For example, if {β1, β2, β3}
is one basis of R3 extending {β1, β2}, then {β1, β2, 2β3} is another basis extending {β1, β2}. Thus,
let β′3 6= β3 be another extension. Let β := {β1, β2, β3}, and let β′ := {β1, β2, β′3}. We claim that
[f ]βα = [f ]β

′

α . Indeed, the ith column of [f ]βα is the coordinate vector [f(αi)]β , and similarly the ith
column of [f ]β

′

α is the coordinate vector [f(αi)]β′ . Since f(αi) ∈ Span{β1, β2} (for any i = 1, 2, 3), the
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coordinate vectors [f(αi)]β and [f(αi)]β′ are identical (they both have the form (∗, ∗, 0). It follows
that the matrices [f ]βα and [f ]β

′

α are equal. This shows that µf,α,∗(β) = µf,α,∗(β
′) even though β 6= β′.

It follows that µf,α,∗ is not 1-1.

(d) (3 points) Let β ∈ B. Show that µf,∗,β is 1-1 if and only if f is invertible.

Proof. Suppose f is invertible. We will show that µf,∗,β is 1-1. This proceeds similarly to part (c).
Suppose α, α′ ∈ B are bases with µf,α,β = µf,α′,β , then we have

[f ]βα = [f ]βα′ = [f ]βα[I]
α
α′

Since f is invertible, so is [f ]βα, so cancelling them (i.e., left multiplying by its inverse), we find again
that

I3 = [I]αα′

By Problem 1 on Quiz 6, this implies that α = α′. Since α, α′ were arbitrary, this shows that µf,∗,β
is 1-1.

Now suppose f is not invertible. We must show that µf,∗,β is not 1-1. The proof uses a similar idea,
but now we will adjust the basis for the domain (instead of the codomain). Since f is not invertible,
by the rank-nullity theorem it has nullity > 0. In particular, there is a nonzero vector v ∈ N(f). Let
α = {α1, α2, α3} ∈ B be any basis of R3. Let α′ := {α1 + v, α2, α3}. Thus α′1 = α1 + v, and α′i = αi
for i = 2, 3. Then we claim that [f ]βα = [f ]βα′ . Since the ith columns of [f ]βα and [f ]βα′ are [f(αi)]β and
[f(α′i)]β respectively, it follows easily that the 2nd and 3rd columns of [f ]βα, [f ]

β
α′ are identical. On

the other hand, the first column of [f ]βα′ is

[f(α′1)]β = [f(α1 + v)]β = [f(α1) + f(v)]β = [f(α1) + 0]β = [f(α1)]β

so the first columns are also identical. Thus, the matrices [f ]βα, [f ]
β
α′ are the same. This shows that

µf,∗,β is not 1-1, as desired.

Remark. In general, if α′ is any basis such that α′i − αi ∈ N(f) for each i, then [f ]βα = [f ]βα′ . Can
you prove this?
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