MATH 350 Linear Algebra Homework 6

Instructor: Will Chen

October 28, 2022

Problems

Book Problems 2 points each, 20 points total

- §4.2, Problems 7, 8, 14, 18, 23

For 18 , use elementary row operations.

- §4.3, Problems 12, 15, 24
- Hints for 24: Call the given matrix A_{n}. The goal is to show that $\operatorname{det}\left(A_{n}+t I_{n}\right)$ is given by the formula $t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$. To do this, use induction on n. First show that it holds for $n=1$ (the "base case"). Then show that if it holds for $n-1$, then it holds for n (this part is called the "inductive step"). To prove the inductive step, use cofactor expansion along a row.
- §4.4, Problems 2(c), 3(e)

In problem 3(e), you're asked to evaluate the determinant by cofactor expansion along the third row.
Note: We're starting to use the field of complex numbers. See the relevant parts of Appendix D for the arithmetic properties of complex numbers.

Additional Problems (10 points total)

- Let \mathcal{B} denote the set of all ordered bases for \mathbb{R}^{3}. Let $\mathcal{L}\left(\mathbb{R}^{3}\right)$ denote the set of linear transformations $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Let

$$
\mu: \mathcal{L}\left(\mathbb{R}^{3}\right) \times \mathcal{B} \times \mathcal{B} \longrightarrow M_{3}(\mathbb{R})
$$

be the map defined by $\mu(f, \alpha, \beta)=[f]_{\alpha}^{\beta}$. Fix $\alpha, \beta \in \mathcal{B}$. A central point of the course so far is that the map

$$
\begin{aligned}
\mu(*, \alpha, \beta): \mathcal{L}\left(\mathbb{R}^{3}\right) & \longrightarrow M_{3}(\mathbb{R}) \\
f & \mapsto[f]_{\alpha}^{\beta}
\end{aligned}
$$

Is a bijection (even, an isomorphism of vector spaces). For any fixed choices of $f \in \mathcal{L}\left(\mathbb{R}^{3}\right), \beta \in \mathcal{B}$, we obtain a map

$$
\begin{aligned}
\mu_{f, *, \beta}: \mathcal{B} & \longrightarrow M_{3}(\mathbb{R}) \\
\alpha & \mapsto
\end{aligned}[f]_{\alpha}^{\beta}
$$

Similarly, for any choices $f \in \mathcal{L}\left(\mathbb{R}^{3}\right), \alpha \in \mathcal{B}$, we have a map

$$
\begin{aligned}
\mu_{f, \alpha, *}: \mathcal{B} & \longrightarrow \\
\beta & \mapsto
\end{aligned} M_{3}(\mathbb{R})
$$

Note that $\mu_{f, \alpha, *}$ and $\mu_{f, *, \beta}$ are not linear! (the set \mathcal{B} is not a vector space). In this exercise we will investigate how the matrix of a linear transformation depends on the choice of basis.
(a) (2 points) Show that for any choice of $f, \alpha, \mu_{f, \alpha, *}$ is not onto.
(b) (2 points) Show that for any choice of $f, \beta, \mu_{f, *, \beta}$ is not onto.
(c) (3 points) Let $\alpha \in \mathcal{B}$. Show that $\mu_{f, \alpha, *}$ is $1-1$ if and only if f is invertible.
(d) (3 points) Let $\beta \in \mathcal{B}$. Show that $\mu_{f, *, \beta}$ is 1-1 if and only if f is invertible.

Hint: For (c) and (d), for the direction invertible $\Longrightarrow 1-1$, you can use the fact, proven on the quiz, that $[I]_{\beta}^{\gamma}=I_{n} \Longleftrightarrow \beta=\gamma$, together with the identity $[f g]_{\alpha}^{\gamma}=[f]_{\beta}^{\gamma}[g]_{\alpha}^{\beta}$. The other direction is more subtle.

