
MATH 350 Linear Algebra
Homework 4

Instructor: Will Chen

October 18, 2022

Homework 3 Problems
Book Problems 2 points each, 30 points total

• §2.2, Problems 4, 5(d)

• §2.3, Problems 3(a), 3(b), 4(d), 12(a), 12(b), 12(c)

Note that problem 4(d) in §2.3 refers to Problem 5(d) in §2.2.

• §2.4, Problems 4, 7(a), 7(b), 24(a), 24(b), 24(c), 24(d)

Hint: In problems 4 and 7, use the correspondence between linear transformations and matrices.

Solutions
In my solutions, any solution which says anything to the effect of "details omitted" is not a complete solution –
in your writeup you would be expected to fill in the details. Otherwise, you can treat the solution as an example
of something that would earn you full credit. However some solutions include more detail than is necessary.

In general, solutions may have typos/errors. I guarantee that by the end of the semester there
will be at least one typo. Please let me know ASAP if you find any, so I can correct it.

§2.2, 4 Define T :M2×2(R)→ P2(R) by T
([
a b
c d

])
= (a+b)+(2d)x+bx2. Let β = {[ 1 0

0 0 ] , [
0 1
0 0 ] , [

0 0
1 0 ] , [

0 0
0 1 ]} and γ =

{1, x, x2}. Compute [T ]γβ .

Solution. Recall, that the ith column of [T ]γβ is just the image of the ith basis vector of β, expressed as
the coordinate vector with respect to γ. Thus if β1, . . . , β4 are the vectors in β, then for example we have

T (β1) = 1

T (β2) = 1 + x2

T (β3) = 0

T (β4) = 2x

Thus

[T ]γβ =

 1 1 0 0
0 0 0 2
0 1 0 0


§2.2, 5(d) Let α = {[ 1 0

0 0 ] , [
0 1
0 0 ] , [

0 0
1 0 ] , [

0 0
0 1 ]}, β = {1, x, x2}, and γ = {1}. Define T : P2(R)→ R by T (f(x)) = f(2).

Compute [T ]γβ .

Solution. Letting β1, β2, β3 be the vectors in β, we have T (β1) = 1, T (β2) = 2, T (β3) = 4, so [T ]γβ is the
1x3 matrix [1 2 4].
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§2.3, 3(a) Let g(x) = 3 + x. Let T : P2(R)→ P2(R) and U : P2(R)→ R3 be the linear transformations respectively
defined by

T (f(x)) = f ′(x)g(x) + 2f(x) U(a+ bx+ cx2) = (a+ b, c, a− b)
Let β = {1, x, x2}, γ = {e1, e2, e3} be the standard ordered bases of P2(R) and R3 respectively. Compute
[U ]γβ , [T ]β , and [UT ]γβ directly. Then use Theorem 2.11 to verify your result.
Solution. We have

[U ]γβ =

 1 1 0
0 0 1
1 −1 0

 [T ]β =

 2 3 0
0 3 6
0 0 4

 [UT ]γβ =

 2 6 6
0 0 4
2 0 −6


As predicted by Theorem 2.11, we have [UT ]γβ = [U ]γβ [T ]β .

§2.3, 3(b) With notation as above, let h(x) = 3 − 2x + x2. Compute [h(x)]β and [U(h(x))]γ . Then use [U ]γβ from
part (a) and Theorem 2.14 to verify your result.
Solution. Note that h(x) ∈ P2(R), so [h(x)]β is the coordinate vector of h(x) with respect to the basis β.
Thus we have

[h(x)]β =

 3
−2
1


Since U(h(x)) = (1, 1, 5), we have

[U(h(x))]γ =

 1
1
5


As predicted by Theorem 2.14, we can check that indeed [U(h(x))]γ = [U ]γβ [h(x)]β .

§2.3, 4(d) Let T : P2(R)→ R be the linear transformation T (f(x)) = f(2), let β = {1, x, x2} be a basis of P2(R), and
let γ = {1} be a basis of R. Use Theorem 2.14 to compute the vector [T (f(x))]γ , where f(x) = 6−x+2x2.
Solution. First, [f(x)]β is the column vector (6,−1, 2). By Theorem 2.14, [T (f(x))]γ is the 1× 1 matrix

[T (f(x))]γ = [T ]γβ [f(x)]β = [1 2 4]

 6
−1
2

 = [1 · 6 + 2 · (−1) + 4 · 2] = [12]

This can also be checked directly, since T (f(x)) = f(2) = 12.

§2.3, 12(a) Let V,W,Z be vector spaces, and let T : V →W and U :W → Z be linear. Prove that if UT is 1-1, then
T is 1-1. Must U also be 1-1?

Proof. Suppose T is not 1-1. Then there exist v 6= v′ ∈ V such that T (v) = T (v′), but then (UT )(v) =
U(T (v)) = U(T (v′)) = (UT )(v′), so this shows that UT is not 1-1. By the contrapositive, it follows that
if UT is 1-1, then T must also be 1-1.

Even if UT is 1-1, U need not be 1-1. For example, take T : R → R2 be given by x 7→ (x, 0) and
U : R2 → R3 be given by (x, y) 7→ (x, 0, 0). Then clearly UT : R→ R3 is just the map x 7→ (x, 0, 0) which
is clearly 1-1. On the other hand, U is clearly not 1-1, since its kernel is the y-axis inside R2.

§2.3, 12(b) With notation as above, prove that if UT is onto, then U is onto. Must T also be onto?

Proof. Suppose UT is onto. Then for any z ∈ Z, there is a v ∈ V such that (UT )(v) = z. But that means
that U(T (v)) = (UT )(v) = z, so U maps T (v) to z. This shows that U is also onto.

Even if UT is onto, T need not be onto. For example, take T : R → R2 be given by x 7→ (x, 0), and
U : R2 → R be given by (x, y) 7→ x. Then UT : R→ R is the identity map x 7→ x, but obviously T is not
onto.
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§2.3, 12(c) With notation as above, prove that if U and T are 1-1 and onto, then UT is also 1-1 and onto.

Proof. Suppose U and T are both 1-1 and onto (i.e., they are both isomorphisms). We will first show that
UT is 1-1, and then show that UT is onto. If (UT )(v) = U(T (v)) = 0, then since U is 1-1, T (v) = 0, and
since T is 1-1, v = 0. This shows that UT is 1-1. For any z ∈ Z, since U is onto, there is a w ∈W such that
U(w) = z. Since T is onto, there is a v ∈ V such that T (v) = w. Then (UT )(v) = U(T (v)) = U(w) = z.
This shows that UT is onto.

§2.4, 4 Let A,B be n× n invertible matrices. Prove that AB is invertible and (AB)−1 = B−1A−1.

Proof. We have ABB−1A−1 = AIA−1 = AA−1 = I. Similarly, we have B−1A−1AB = B−1IB = B−1B =
I. This shows that B−1A−1 is the inverse of AB. Note that B−1A−1 6= A−1B−1 in general!

§2.4, 7(a) Let A be an n× n matrix. Suppose that A2 = O. Prove that A is not invertible.

Proof. Recall that O is the zero matrix. If A is invertible, then we may multiply A2 = O on both sides by
A−1 to get A−1A2 = A−1O = O. But this implies A = A−1A2 = O, but clearly O is not invertible, so this
contradicts the invertibility of A. Thus A could not have been invertible.

§2.4, 7(b) Let A be an n×n matrix. Suppose that AB = O for some nonzero n×n matrix B. Could A be invertible?
Explain.

Proof. If A were invertible, then A−1AB = A−1O = O, so B = A−1AB = O. Since B is assumed nonzero,
this means that A could not be invertible.

Remark. You should think of this as being analogous to the statement: If a ∈ R is invertible (i.e.,
nonzero), then the only way for ab = 0 is that b = 0.

§2.4, 24(a) Let V and Z be vector spaces and let T : V → Z be a linear transformation that is onto. Define the
mapping

T : V/N(T )→ Z by T (v +N(T )) = T (v)

for any coset v+N(T ) ∈ V/N(T ). Prove that T is well-defined; that is, prove that if v+N(T ) = v′+N(T ),
then T (v) = T (v′).

Proof. Suppose that v+N(T ) = v′+N(T ). Recall, by an earlier homework problem (§1.3, 31(b)) that this
happens if and only if v − v′ ∈ N(T ). Then T (v)− T (v′) = T (v − v′) = 0, so T (v) = T (v′) as desired.

§2.4, 24(b) Prove that T is linear.

Proof. Let v +N(T ), v′ +N(T ) ∈ V/N(T ). Then T ((v +N(T )) + (v′ +N(T ))) = T ((v + v′) +N(T )) =
T (v+ v′) = T (v) + T (v′) = T (v+N(T )) + T (v′ +N(T )). The key step here is the second to last equality,
using the linearity of T . This shows that T is additive.

Let v + N(T ) and a ∈ F . Then T (a(v + N(T ))) = T (av + N(T )) = T (av) = aT (v) = aT (v + N(T )).
Again, the key step is to use the linearity of T . This shows that T respects scalar multiplication. Thus, T
is linear.

§2.4, 24(c) Prove that T is an isomorphism.
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Proof. Since T is linear, it remains to check that it is bijective (i.e., 1-1 and onto). Note that T (v+N(T )) =
T (v) = 0 if and only if v ∈ N(T ) if and only if v +N(T ) is the zero vector in V/N(T ). This shows that T
is 1-1.

Now let z ∈ Z. Since T is onto, there is some v ∈ V such that T (v) = z. But then T (v+N(T )) = T (v) = z,
so T is onto, as desired.

Remark. One might be tempted to use the rank-nullity theorem here, but this would not be valid since
we have not assumed that V,Z are finite dimensional.

§2.4, 24(d) Prove that the diagram
V Z

V/N(T )

T

η T

commutes. That is, prove that T = Tη.

Proof. Recall from Exercise 42 of §2.1 that η : V → V/N(T ) is the map sending v 7→ v + N(T ). Then
unfolding definitions, for any v ∈ V we have

(Tη)(v) = T (η(v)) = T (v +N(T )) = T (v)

This shows that Tη = T as desired.
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