
MATH 350 Linear Algebra
Homework 3 Solutions

Instructor: Will Chen

September 30, 2022

Homework 3 Problems
Book Problems

• (12 points) §1.6, Problem 1 (1 point per part) No proofs needed, but you should have a proof in mind!)

• (14 points) §2.1, Problems 2, 3, 27(a), 27(b), 27(c), 27(d), 42(a) (2 points each)

• (2 points) §2.2, Problem 2(a)

Additional Problems

• (2 points) Let V be a vector space, and let B := {v1, . . . , vn} be a basis. Let W ⊂ V be a subspace.
Must there exist a subset S ⊂ B such that S is a basis for W? (If yes, prove the result. If no, give a
counterexample.)

Solutions
In my solutions, any solution which says anything to the effect of "details omitted" is not a complete solution –
in your writeup you would be expected to fill in the details. Otherwise, you can treat the solution as an example
of something that would earn you full credit. However some solutions include more detail than is necessary.

In general, solutions may have typos/errors. I guarantee that by the end of the semester there
will be at least one typo. Please let me know ASAP if you find any, so I can correct it.

1. (§1.6, 1) True or false:

(a) The zero vector space has no basis.
False. The zero vector space {0} has the empty set as a basis. By definition, the empty set is linearly
independent. By convention, we say that an empty sum is 0, and hence 0 is a linear combination of
things in the empty set. Thus the empty set is a linearly independent set which spans the zero vector
space.

(b) Every vector space that is generated by a finite set has a basis.
True. This is theorem 1.9 in the book.

(c) Every vector space has a finite basis.
False. An infinite dimensional vector space does not have a finite basis (or else it would be finite-
dimensional). For example, the set of all polynomials over a field is infinite-dimensional: one basis is
{1, x, x2, x3, . . .}.

(d) A vector space cannot have more than one basis.
False. Almost every vector space has more than one basis. For example, the vector space R already
has infinitely many bases. Any nonzero number in R is a basis for R.
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(e) If a vector space has a finite basis, then the number of vectors in every basis is the same.
True. This is Corollary 1 in the book (p47).

(f) The dimension of Pn(F ) is n.
False. One basis for Pn(F ) is {1, x, x2, x3, . . . , xn}. By the definition of dimension, we have dimPn(F ) =
n+ 1.

(g) The dimension of Mm×n(F ) is m+ n.
False. A basis for Mm×n(F ) is given by the matrices Eij for 1 ≤ i ≤ m and 1 ≤ j ≤ n, where Eij is
the matrix with a 1 in position ij, and zeros everywhere else. There are m choices for i and n choices
for j, so this basis consists of mn vectors.

(h) Suppose that V is a finite dimensional vector space, that S1 is a linearly independent subset of V ,
and that S2 is a subset of V that generates V . Then S1 cannot contain more vectors than S2.
True. This follows from the replacement theorem (Theorem 1.10 in the book).

(i) If S generates the vector space V , then every vector in V can be written as a linear combination of
vectors in S in only one way.
False. For example, take s1 = (1, 0), s2 = (0, 1), s3 = (1, 1), and set S = {s1, s2, s3} ⊂ R2. Then S
generates R2 but (1, 1) = s1 + s2, but it is also equal to (1, 1) = s3.

(j) Every subspace of a finite dimensional space is finite dimensional.
True. This follows from Theorem 1.11 in the book.

(k) If V is a vector space having dimension n, then V has exactly one subspace with dimension 0 and
exactly one subspsace with dimension n.
True. The only 0-dimension space is the 0 vector space {0}. If W ⊂ V is an n-dimensional subspace,
then W = V by Theorem 1.11. So the unique 0 and n-dimensional subspaces of V are {0} and V
respectively.

(l) If V is a vector space having dimension n, and if S is a subset of V with n vectors, then S is linearly
independent if and only if S spans V .
True. If |S| = n and S is linearly independent, then by Corollary 2(b) in the book (p48), S is a basis
and hence spans V . Conversely, if |S| = n and S spans V , then by Corollary 2(a), S is a basis and
hence is linearly independent.

2. (§2.1, 2) Let T : R3 → R2 be defined by T (a1, a2, a3) = (a1 − a2, 2a3). Prove that T is a linear trans-
formation, find bases for both N(T ) and R(T ). Then compute the nullity and rank of T , and verify the
dimension theorem. Finally use the appropriate theorems to determine whether T is one-to-one or onto.

Solution. To prove T is linear, you need to check that for any c, a1, a2, a3, a′1, a′2, a′3 ∈ R:

T (a1 + a′1, a2 + a′2, a3 + a′3) = T (a1, a2, a3) + T (a′1, a
′
2, a
′
3)

and that
T (ca1, ca2, ca3) = cT (a1, a2, a3)

This follows from a straightforward application of the definition of T . Details omitted.

The image of T is the subspace consisting of all (x, y) ∈ R2 satisfying x = a1 − a2, y = 2a3. Solving this
system of equations shows that it has solutions for all x, y ∈ R. In other words, T is surjective, since
for example T (x, 0, y2 ) = (x, y). Thus R(T ) = R2, a basis for which is {e1, e2} = {(1, 0), (0, 1)}. Thus
rank(T ) = 2. The nullspace consists of all vectors (a1, a2, a3) satisfying a1 − a2 = 0, 2a3 = 0. The general
solution is: (a1, a1, 0) (for any a1 ∈ R). Thus N(T ) is the 1-dimensional subspace {(a1, a1, 0) | a1 ∈ R}.
One basis for N(T ) is (1, 1, 0).

Thus we have rank(T ) + nullity(T ) = 2 + 1 = 3 = dim(R3), so T verifies the dimension theorem (as it
should, or else we must have made a mistake somewhere).

Finally, we saw already that T is surjective. It is clearly not one-to-one since its kernel is nonzero.
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3. (§2.1, 3) Let T : R2 → R3 be defined by T (a1, a2) = (a1 + a2, 0, 2a1 − a2). Prove that T is a linear
transformation, find bases for both N(T ) and R(T ). Then compute the nullity and rank of T , and verify
the dimension theorem. Finally use the appropriate theorems to determine whether T is one-to-one or
onto.

Solution. We omit the proof that T is linear.

By Theorem 2.2 (in the book), the image of T is the span of T (e1), T (e2). Using the definition of T , we
can compute these to be:

T (e1) = T (1, 0) = (1, 0, 2)

T (e2) = T (0, 1) = (1, 0,−1)

These two vectors are easily seen to be linearly independent, since neither is a linear combination of the
other. Thus (1, 0, 2), (1, 0,−1) is a basis for R(T ), and hence R(T ) is 2-dimensional (so T has rank 2)

The kernel of T consists of all (a1, a2) ∈ R2 satisfying a1 + a2 = 0 and 2a1 − a2 = 0. Solving this system
shows that the unique solution is (0, 0), so the kernel is the zero subspace, with basis the empty set, so T
has nullity 0.

We have rank(T ) + nullity(T ) = 2 + 0 = 2 = dim(R2), so T satisfies the dimension theorem again (as it
should, or else we must have made a mistake somewhere). Since Ker(T ) = 0, T is one-to-one by Theorem
2.4. Since the image is 2-dimensional but R3 is 3-dimensional, T is not onto.

4. (§2.1, 27) Let V be a vector space and W1,W2 be subspaces such that V = W1 ⊕W2 (i.e., V = W1 +W2

and W1 ∩W2 = 0). The function T : V → V defined by T (x) = x1, where x = x1 + x2 with xi ∈ Wi, is
called the projection of V on W1.

Remark. The definition of T is unambiguous because the assumption that W1 ∩W2 = 0 implies that the
decomposition x = x1 +x2 is unique. That is to say, x1, x2 are the unique elements in W1,W2 respectively
satisfying x = x1 + x2. Thus, x1, x2 are determined by x, so it makes sense to define T (x) = x1. This was
proven in Homework 2 (§1.3, Problem 30). This uniqueness is crucial for this problem to make sense.

(a) Prove that T is linear and W1 = {x ∈ V : T (x) = x}.

Proof. Suppose x, x′ ∈ V with x = x1 + x2 and x′ = x′1 + x′2 (where xi, x′i ∈ Wi). Then x + x′ =
(x1 + x′1) + (x2 + x′2) where the first term lies in W1 and the second lies in W2. Thus T (x + x′) =
x1 + x′1 = T (x) + T (x′), as desired. Similarly, if a ∈ F , then ax = ax1 + ax2 where the first term lies
in W1 and the second in W2. Thus T (ax) = ax1 = aT (x). This shows T is linear.
If x ∈ W1, then its decomposition x = x1 + x2 is simply x = x+ 0 (so x1 = x, x2 = 0), and we have
T (x) = x. This shows that W1 ⊂ {x ∈ V : T (x) = x}. Conversely, if x ∈ V satisfies T (x) = x, then
since the image of T is a subset of W1, it follows that x ∈ W1, so {x ∈ V : T (x) = x} ⊂ W1. Since
we’ve proven containments in both directions, we must have equality: W1 = {x ∈ V : T (x) = x}.

(b) With notation as above, prove that W1 = R(T ) and W2 = N(T ).

Proof. It follows from the definition of T that R(T ) ⊂ W1. Conversely, if x ∈ W1, then from part
(a) we know that T (x) = x, and hence x ∈ R(T ). Thus W1 ⊂ R(T ). Since we’ve proven both
containments, we must have equality: W1 = R(T ).
If x ∈ W2, then the decomposition x = x1 + x2 is just x = 0 + x, so x1 = 0, so T (x) = x1 = 0.
This shows that W2 ⊂ N(T ). Conversely, if x ∈ N(T ), then T (x) = x1 = 0, but that means
x = x1 + x2 = 0 + x2 = x2 ∈ W2, so x ∈ W2. This shows N(T ) ⊂ W2. Again we have proven both
containments, so we must have W2 = N(T ).

(c) Describe T if W1 = V .
Solution. If W1 = V , then since W2 ⊂ V , we must have W1 ∩W2 = W2. Since W1 ∩W2 = 0, it
follows that W2 = 0. Thus for any x ∈ V , we must have x2 = 0, Thus x = x1 + x2 = x1 + 0 = x1, so
T (x) = x1 = x. Thus T is the identity V → V .
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(d) Describe T if W1 is the zero subspace.
Solution. If W1 = 0, then since W1 + W2 = V , we must have W2 = V . By (b), we know that
N(T ) =W2 = V , so T must be the zero map V → V (i.e., T sends everything to 0).

5. (§2.1, 42(a)) Let V be a vector space andW a subspace of V . Define the map η : V → V/W by η(v) = v+W
for v ∈ V . Prove that η is a linear transformation from V onto V/W and that N(η) =W .

Proof. Let v1, v2 ∈ V . Then

η(v1 + v2) = (v1 + v2) +W = (v1 +W ) + (v2 +W ) = η(v1) + η(v2)

Here, the second equality follows from the definition of addition for cosets. The first and third equalities
follows from the definition of η. Similarly, for any a ∈ F , v ∈ V we have

η(av) = av +W = a(v +W )

where the first equality is the definition of η, the second is the definition of scalar multiplication of cosets.
This shows that η is linear.

Next we show that it is onto V/W . This is easy, since every element of V/W is a coset of the form v+W ,
and by definition η sends v to v +W . Thus η surjects onto V/W .

Finally we show that N(η) = W . If w ∈ W , then by §1.3 Exercise 31(b) in Homework 2, we have
η(w) = w +W = 0 +W , which is the zero vector in the coset space V/W . Thus W ⊂ N(η). In the other
direction, if η(v) = 0 +W , then by definition of η, this means v +W = 0 +W . By §1.3 Exercise 31(b)
again, we conclude that v − 0 = v ∈ W . Thus N(η) ⊂ W . Since we have proven both containments, we
must have N(η) =W .

6. (§2.2, 2(a)) Let β, γ be the standard ordered bases for Rn and Rm respectively. For T : R2 → R3 defined
by T (a1, a2) = (2a1 − a2, 3a1 + 4a2, a1), compute [T ]γβ .

Solution. Since the domain and codomain are 2 and 3-dimensional respectively, we may write β = (b1, b2)
and γ = (g1, g2, g3). The matrix [T ]γβ will have two columns and three rows. The first column consists of
the coefficients of T (b1) relative to the basis γ, and the second column consists of the coefficients of T (b2)
relative to the basis γ. Since β, γ are both the standard bases, the first column the coefficients of T (e1)
relative to the standard basis of R3. Since

T (e1) = T (1, 0) = (2, 3, 1) = 2e1 + 3e2 + e3

the first column has entries 2, 3, 1. Similarly, since

T (e2) = T (0, 1) = (−1, 4, 0) = −e1 + 4e2 + 0e3

the second column has entries −1, 4, 0. Thus the matrix is

[T ]γβ =

 2 −1
3 4
1 0


Remark. Of course in your solution you can skip the β = (b1, b2), γ = (g1, g2, g3) part, since they are both
the standard bases. I included it to remind you how to compute matrices with respect to general bases.

7. (Additional Problem) Let V be a vector space, and let B := {v1, . . . , vn} be a basis. Let W ⊂ V be a
subspace. Must there exist a subset S ⊂ B such that S is a basis for W? (If yes, prove the result. If no,
give a counterexample.)

Solution. The answer is no. For example, take the standard basis B = {e1, e2} = {(1, 0), (0, 1)} of R2,
and take W = Span{(1, 1)}. Then no subset of B gives a basis for W .
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Remark. The subspaces of R2 can be described as follows. There’s always the 0 subspace (this is the
unique 0-dimensional subspace). There’s also the whole space (this is the unique top-dimensional subspace,
in this case 2-dimensional). Finally, there are infinitely many 1-dimensional subspaces, each one is given by
a line through the origin. If B is any basis for R2, then a subset S ⊂ B will be the basis of a 1-dimensional
subspace if and only if |S| = 1. However since |B| = 2, there are only 2 subsets of size 1 of B, so only two
1-dimensional subspaces have a basis which is a subset of B. The remaining infinitely many subspaces do
not have a basis which is a subset of B.
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