
MATH 350 Linear Algebra
Homework 2 Solutions

Instructor: Will Chen

September 23, 2022

In the following, any solution which says anything to the effect of "details omitted" is not a complete solution –
in your writeup you would be expected to fill in the details. Otherwise, you can treat the solution as an example
of something that would earn you full credit. However some solutions include more detail than is necessary.

Each problem is worth 2 points (30 points total).

These solutions may have typos/errors. I guarantee that by the end of the semester there will be
at least one typo. Please let me know ASAP if you find any, so I can correct it.

§1.3, 23(a) Let W1,W2 ⊂ V be subspaces. Prove that W1 +W2 is a subspace of V that contains both W1 and W2.

Proof. If w,w′ ∈ W1 +W2, we may write w = w1 + w2, w
′ = w′

1 + w′
2 for w1, w

′
1 ∈ W1 and w2, w

′
2 ∈ W2.

Then w+w′ = (w1+w′
1)+(w2+w′

2). Since each of W1,W2 are subspaces, w1+w′
1 ∈W1 and w2+w′

2 ∈W2.
Thus w+w′ ∈W1 +W2. Similarly, for a ∈ F , aw = aw1 + aw2. Since W1,W2 are subspaces awi ∈Wi for
i = 1, 2, so aw ∈W1+W2. Finally, for i = 1, 2, any wi ∈Wi can be written as 0+wi = wi+0 ∈W1+W2,
so W1 +W2 contains both W1,W2.

§1.3, 23(b) Prove that any subspace of V that contains both W1,W2 must also contain W1 +W2.

Proof. Let W ⊂ V be a subspace containing both W1,W2. This means for any w1 ∈ W1, w2 ∈ W2,
w1, w2 ∈ W . Since W is a subspace, it contains w1 + w2. Since wi is arbitrary in Wi, this shows that W
contains W1 +W2.

§1.3, 30 Let W1,W2 be subspaces of V . Prove that V is the direct sum of W1,W2 if and only if each vector in V
can be uniquely written as x1 + x2 where xi ∈Wi.

Proof. By definition, V is the direct sum of W1,W2 if V = W1 +W2 and W1 ∩W2 = 0. (See p22 in the
book for the definition).

Now suppose V is the direct sum. Since V = W1 + W2, any v ∈ V can be written v = w1 + w2 where
wi ∈Wi. If w′

1 ∈W1, w
′
2 ∈W2 satisfy v = w′

1 + w′
2, then we would have

w1 + w2 = v = w′
1 + w′

2

Equivalently,
w1 − w′

1 = w′
2 − w2

Since the left hand side lies in W1 and the right hand side lies in W2, this means w1 − w′
1 ∈ W1 ∩W2, so

w1 − w′
1 = 0 = w′

2 − w2. Thus wi = w′
i for i = 1, 2. This shows that the decomposition v = w1 + w2 is

unique.

For the converse, suppose V is not the direct sum. We must show that the statement P := “every v ∈ V
can be written uniquely as w1 +w2 for wi ∈Wi” fails. Since V is not the direct sum, either V 6= W1 +W2,
or W1 ∩W2 6= 0. If V 6= W1 +W2, then there is some v ∈ V , v /∈ W1 +W2, which is to say that v cannot
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be written as w1 + w2 with wi ∈ Wi. Thus the statement P fails. If W1 ∩W2 6= 0, then let w ∈ W1 ∩W2

be a nonzero vector. Then w ∈ V can be written as w = w+ 0 = 0+w. This gives you two different ways
of representing w as w1 +w2 with wi ∈Wi, so again P fails. Thus we’ve shown that if V is not the direct
sum, then the statement P fails.

§1.3, 31(a) Let W be a subspace of a vector space V over a field F . For any v ∈ V , let set v+W := {v+w : w ∈W}
is called the coset of W containing v. Prove that v +W is a subspace of V if and only if v ∈W .

Proof. If v+W is a subspace, then 0 ∈ v+W , so 0 = v+w for some w ∈W , so v = −w. Since subspaces
contain inverses, this implies v ∈W . Conversely, if v ∈W , then we will show that v+W = W , and hence
is a subspace. Clearly v +W ⊂ W . Moreover, for any w ∈ W , we have w = v + (w − v). Since v ∈ W ,
w − v ∈W , so we’ve shown that any w ∈W lies in v +W . This shows that W ⊂ v +W , so W = v +W ,
hence v +W is a subspace.

§1.3, 31(b) Prove that v1 +W = v2 +W if and only if v1 − v2 ∈W .

Proof. Suppose v1− v2 ∈W , then v2− v1 = −(v1− v2) ∈W . We want to show that v1+W ⊂ v2+W and
that v2+W ⊂ v1+W . Since v1−v2 ∈W , for any w ∈W we have v1+w = v2+(v1−v2+w) ∈ v2+W . This
shows the first containment. Since v2−v1 ∈W , for any w ∈W we have v2+w = v1+(v2−v1+w) ∈ v1+W ,
which shows the second containment.

Conversely, suppose v1 +W = v2 +W . Then v1 ∈ v1 +W = v2 +W , so we can write v1 = v2 + w, which
is to say that v1 − v2 = w ∈W .

§1.3, 31(c) Addition and scalar multiplication by elements of F can be defined in the collection S = {v +W : v ∈ V }
of all cosets of W as follows:

(v1 +W ) + (v2 +W ) = (v1 + v2) +W

for all v1, v2 ∈ V , and
a(v +W ) = av +W

for all v ∈ V and a ∈ F . Prove that the preceding operations are well defined; that is, show that if
v1 +W = v′1 +W and v2 +W = v′2 +W , then

(v1 +W ) + (v2 +W ) = (v′1 +W ) + (v′2 +W ) and a(v1 +W ) = a(v′1 +W )

for all a ∈ F .

Proof. By the definition of addition, and scalar multiplication, we must show that (v1 + v2) + W =
(v′1 + v′2) +W , and av1 +W = av′1 +W .

Since vi+W = v′i+W , by 31(b) we have vi−v′i ∈W (for i = 1, 2). But this means that (v1+v2)−(v′1+v′2) =
(v1 − v′1) + (v2 − v′2) ∈ W . Again using 31(b), we find that (v1 + v2) +W = (v′1 + v′2) +W . Similarly, we
know that a(v1 − v′1) = av1 − av′1 ∈W , so by 31(b) we have av1 +W = av′1 +W , as desired.

§1.3, 31(d) Prove that the set S is a vector space with the operations defined in (c). This vector space is called the
quotient space V mod W and is denoted by V/W .

Proof. (omitted)
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§1.5, 2(c) Determine if the set {x3+2x2,−x2+3x+1, x3−x2+2x− 1} ⊂ P3(R) is linearly independent. Solution.
We are interested in understanding the set of solutions (a1, a2, a3) of the equation

a1(x
3 + 2x2) + a2(−x2 + 3x+ 1) + a3(x

3 − x2 + 2x− 1) = 0

Collecting like terms, we are looking at the linear system

a1 + a3 = 0

2a1 − a2 − a3 = 0

3a2 + 2a3 = 0

a2 − a3 = 0

By definition of linear independence, the set is linearly independent if and only if the only solution to the
system is a1 = a2 = a3 = 0.

The general solution can be obtained using the techniques of Math 250, but in this case one can find it
without too much work. The last equation forces a2 = a3, so we may replace all instances of a3 with a2.
The first equation forces a1 + a2 = 0, so we may replace all instances of a2 with −a1. The second equation
then becomes 2a1 + a1 + a1 = 0, so a1 = −a2 = −a3 = 0. Thus the coefficients are all forced to be 0, so
the set is linearly independent.

§1.5, 8 Let S = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} be a subset of the vector space F 3.

(a) Prove that if F = R, then S is linearly independent.

Proof. With the technology of §1.6, we could show this by showing that S spans R3, but we don’t have
that at our disposal, so we must proceed more directly. Again, we wish to understand the solutions
(a1, a2, a3) to the equation

a1(1, 1, 0) + a2(1, 0, 1) + a3(0, 1, 1) = (0, 0, 0)

This turns into the linear system

a1 + a2 = 0

a1 + a3 = 0

a2 + a3 = 0

Again this can be solved using the techniques of Math 250. Here we proceed more organically: The
first equation forces a2 = −a1, the second forces a3 = −a1, so a3 = a2 = −a1. Using this, the last
equation forces a3 + a3 = 2a3 = 0, so a3 = 1

2 · 2a3 = 1
2 · 0 = 0. This makes crucial use of the fact that

we can divide by 2.

(b) Prove that if F has characteristic 2, then S is linearly dependent.

Proof. Recall that F has characteristic 2 if 1 + 1 = 0. Note that the crucial difference with the case
F = R is that in the final step of the part 9a), a3 + a3 = 0 no longer forces a3 = 0. This is bceause
over a field of characteristic 2, for any a ∈ F , a + a = 2a = 0. The idea is to use this observation
to come up with a linear dependence relation for S. In this case, the linear dependence relation is
simple: take a1 = a2 = a3 = 1. Then we have

(1, 1, 0) + (1, 0, 1) + (0, 1, 1) = (2, 2, 2) = (0, 0, 0) ∈ F 3

Here the coefficients are all 1. Note that in any field, 0 6= 1.

§1.5, 10 Give an example of three linearly dependent vectors in R3 such that none of the three is a multiple of
another.

Solution. There are many such examples. The first observation is that since dimR3 = 3, for three vectors
in R3 to be linearly dependent, they cannot span R3 (this uses the technology of §1.6). Since none of them
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is a multiple of another, none of them can be 0, and they also cannot span a 1-dimensional space. Thus
we must look for 3 vectors which span a 2-dimensional subspace of R3. Here is an example:

(1, 0, 0), (0, 1, 0), (1, 1, 0)

They span the 2-dimensional subspace {(x, y, 0) : x, y ∈ R} ⊂ R3, and clearly none of them is a multiple
of another.

§1.5, 18 Let S be a set of nonzero polynomials in P (F ) such that no two have the same degree. Prove that S is
linearly independent.

Proof. Suppose for some a1, . . . , an ∈ F and f1, . . . , fn ∈ S, we have

a1f1 + · · ·+ anfn = 0 (1)

Suppose the fi’s are numbered so that deg f1 < deg f2 < · · · < deg fn. Let Sr be the set {f1, . . . , fr}. We
will show by induction that each Sr is linearly independent. The base case r = 1 holds because f1 6= 0, so
S1 = {f1} is independent. Suppose Sr is linearly independent (for r < n), then since deg fr+1 > deg fr,
fr+1 /∈ SpanSr, so by Theorem 1.7 in the book, Sr+1 is linearly independent. By induction, this shows
that each Sr is linearly independent. In particular, Sn is.

§1.6, 11 Let u, v be distinct vectors of a vector space V . Show that if {u, v} is a basis for V and a, b are nonzero
scalars, then both {u+ v, au} and {au, bv} are also bases for V .

Proof. Note that since {u, v} is a basis for V , we have dimV = 2.

First we show S := {u + v, au} is a basis. Since a 6= 0, 1
a · au = u ∈ SpanS, so −u ∈ SpanS, so

v = (u + v) + (−u) ∈ SpanS, so {u, v} ⊂ SpanS. Since u, v spans V , SpanS = V . Now we must show
that S is linearly independent. We could do this directly, which would be annoying, or we can appeal to
our newly acquired technology. Specifically, Corollary 2(a) in §1.6 of the book implies that because S is a
spanning set which has size equal to dimV = 2, it must be a basis.

Next we show that S′ := {au, bv} is a basis. The same argument as above shows that u, v ∈ SpanS′, so S′

is again a spanning set. Since it has size equal to dimV = 2, Corollary 2(a) implies that it is a basis.

§1.6, 32(a) Find examples of subspaces W1,W2 of R3 such that dimW1 > dimW2 > 0 and dim(W1 ∩W2) = dimW2.

Solution. You can take any two nonzero subspaces satisfying W1 ) W2. In this case W1 ∩W2 = W2, so
dim(W1 ∩W2) = dim(W2). For example, take W1 = R3 and W2 any nonzero subspace (e.g., {(x, y, 0) :
x, y ∈ R}).

§1.6, 32(b) Find examples of subspaces W1,W2 of R3 such that dimW1 > dimW2 > 0 and dim(W1+W2) = dim(W1)+
dim(W2).

Solution. It turns out this happens if and only if W1 ∩W2 = 0 (Exercise: prove this!). For example, you
can take

W1 = {(x, y, 0) : x, y ∈ R} W2 = {(0, 0, z) : z ∈ R}

§1.6, 32(c) Find examples of subspaces W1,W2 of R3 such that dimW1 > dimW2 > 0 and dim(W1+W2) < dimW1+
dimW2.

Solution. Here we want to take subspaces with nontrivial intersection. For example, we can take

W1 = {(x, y, 0) : x, y ∈ R} W2 = {(x, 0, 0) : x ∈ R}

Then W1 +W2 = W1, so dim(W1 +W2) = dimW1 = 2, but dimW1 + dimW2 = 2 + 1 = 3.
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