
MATH 350 Name: ********************

FINAL EXAM SOLUTIONS

This is an closed book, closed notes exam. No calculators are allowed.

Useful shorthand: Feel free to write:

• “LI” instead of “linearly independent”

• “LD” instead of “linearly dependent”

• “v.s.” instead of “vector space”

• “f.d.”, or “fin. dim.” instead of “finite dimensional”. You can also write “dimV <∞” for “V is finite
dimensional”.

• “evalue, vector, espace” for “eigenvalue, eigenvector, eigenspace”.

If you use this, make sure you write very clearly.

Reminders: If T is a linear operator on a vector space V , and W ⊂ V is T -invariant, then TW denotes
the linear operator TW : W → W given by TW (w) = T (w). Also, if v ∈ V , then the T -invariant subspace
generated by v is 〈v〉T := Span{v, Tv, T 2v, . . .}. Recall that if x ∈ V is a generalized λ-eigenvector, then
the cycle generated by x is the set Cx := {(T −λI)p−1x, . . . , (T −λI)x, x}, where p is the smallest positive
integer such that (T −λI)px = 0. The vector (T −λI)p−1x is called the initial vector of the cycle Cx, and
x is called the end vector.

For a linear operator T : V → V , if β is a basis of V , then [T ]β denotes the matrix of T w.r.t. the basis
β. If V = Rn, std := {e1, . . . , en} denotes the standard basis.

If you are asked to prove and if and only if (“ ⇐⇒ ”), then you must prove both directions. If you are asked
to prove that two sets A,B are equal, then you must prove A ⊂ B and B ⊂ A.

Every vector space is implicitly over some field F . Recall the definition of a field:

Definition 0.0.1 (Fields). A field F is a set with two operations + : F × F → F and · : F × F → F ,
such that the following hold for all a, b, c ∈ F :

(F1) a+ b = b+ a and a · b = b · a

(F2) (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c)

(F3) There exist distinct elements “0” and “1” in F such that

0 + a = a and 1 · a = a

(F4) For each a ∈ F and nonzero b ∈ F , there exist elements c, d ∈ F such that

a+ c = 0 and b · d = 1

(F5) a · (b+ c) = a · b+ a · c

In F4, c is called the negative of a, denoted “−a”, and d is called the multiplicative inverse of b, denoted
“b−1” or “1/b”.
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1. (12 points, 1 point each) Label the following statements (T)rue or (F)alse. No justification required.

(a) Suppose {x, y, w, z} ⊂ R4 spans R4, then {x, y, z, w} is linearly independent.

Solution. TRUE.

(b) Suppose V is a vector space and {x1, x2, x3} ⊂ V a subset such that {xi, xj} is linearly inde-
pendent whenever i 6= j (i, j ∈ {1, 2, 3}). Then {x1, x2, x3} must be linearly independent.

Solution. FALSE. E.g., take (1, 0), (0, 1), (1, 1) in R2

(c) If T : V →W is linear and S ⊂ V is linearly independent, then T (S) is also linearly independent.

Solution. FALSE. This is only true if T is 1-1.

(d) If T : V →W is linear and S ⊂ V spans V , then T (S) spans W .

Solution. FALSE. This is only true if T is onto.

(e) {0} is a basis for the zero vector space.

Solution. FALSE. 0 is never a member of any basis.

(f) If T : V → V is a linear operator, then for any two polynomials f(t), g(t), f(T )g(T ) = g(T )f(T ).

Solution. TRUE.

(g) If T : V → V is a linear operator with χT (t) = (λ1 − t)mλ1 (λ2 − t)mλ2 · · · (λk − t)mλk (where
λi ∈ F for each i), then det(T ) = λ

mλ1
1 λ

mλ2
2 · · ·λmλkk .

Solution. TRUE.

(h) If T is a linear operator on a finite dimensional vector space V and W ⊂ V is a T -invariant
subspace, then χTW (t) divides χT (t).

Solution. TRUE.

(i) Let T be a linear operator on a finite dimensional vector space V with split characteristic
polynomial. Let λ1, . . . , λk be its distinct roots, then V = Kλ1 ⊕Kλ2 ⊕ · · · ⊕Kλk .

Solution. TRUE.

(j) Let T be a linear operator on a finite dimensional vector space V . Then T is similar to an upper
triangular matrix if and only if χT is split.

Solution. TRUE.

(k) If T : V → V is linear, dimV <∞, and β a basis for V , then N(T ) is isomorphic to N([T ]β).

Solution. TRUE.

(l) Let T be a linear operator on a vector space V with distinct eigenvalues λ1, . . . , λk. If Si is a
linearly independent subset of Kλi , then S1 ∪ S2 ∪ · · · ∪ Sk is linearly independent.

Solution. TRUE.
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2. Let A,B be two linear operators on a finite dimensional vector space V . For the following, if the
answer is yes, prove it. If no, give a counterexample.

(a) (4 pts) If AB is an isomorphism, must A and B both be isomorphisms?

Solution. Yes. Suppose B is not an isomorphism. Then there is a nonzero v ∈ N(B), so that
Bv = 0, so ABv = A0 = 0, so N(AB) is also nonzero, so AB is not an isomorphism. If A is
not an isomorphism, then it is not onto, so there is a vector v ∈ V which is not in the range
(or image) of A. But then v is also not in the range of AB, so in this case AB is also not an
isomorphism.

(b) (4 pts) If AB = 0, must at least one of A,B be zero?

Solution. No. For example take A = B = [ 0 1
0 0 ], then AB = A2 = 0 but neither A nor B are

zero.

3. Let T : R3 → R3 be the linear map given by

T (x, y, z) = (−x− 3y − z,−19y − 2z, 9y + z)

(a) (4 pts) Find the matrix [T ]std .

Solution. The matrix is  −1 −3 −1
0 −19 −2
0 9 1


(b) (4 pts) Find the characteristic polynomial χT (t) and the determinant det(T ).

Solution. χT (t) = (−1 − t)((−19 − t)(1 − t) − (−18)) = (t + 1)(t2 + 18t − 19 + 18) =
−(t+ 1)(t2 + 18t− 1) = −t3 + 19t2 + 17t+ 1. The determinant is just det(T ) = χT (0) = 1.

(c) (3 pts) Is T diagonalizable? Justify your answer.

Solution. Yes. By the quadratic formula, the polynomial t2 + 18t − 1 has two distinct roots,
neither of which are -1, so χT (t) has 3 distinct roots. Thus T is diagonalizable.

(d) (4 pts) Is T invertible? If it is, use the Cayley-Hamilton theorem to express T−1 as a linear
combination of I, T, T 2. If not, explain why not.

Solution. Yes. Since det(T ) is nonzero, T is invertible. By the Cayley-Hamilton theorem, we
have −T 3 + 19T 2 + 17T + I = 0, so −T 2 + 19T + 17I + T−1 = 0, so T−1 = T 2 − 19T − 17I.
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4. (5 pts) Find an example of a matrix A ∈M4(R) whose minimal polynomial equals its characteristic
polynomial.

Solution. You can take any matrix with split characteristic polynomial such that the dot diagram
associated to each eigenvalue consists of a single column. E.g., you can take

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


This matrix A has a single eigenvalue, A is its own Jordan canonical form, with Jordan basis the
standard basis, which is also a single cycle. Its minimal polynomial is t4 which is equal to its
characteristic polynomial.

5. A linear operator N which satisfies Nk = 0 for some k ≥ 1 is called nilpotent.

(a) (4 pts) If N is a nilpotent operator on a vector space V , prove that 0 is the only eigenvalue of
N (i.e., show that 0 is an eigenvalue and N has no eigenvalues other than 0).

Solution. If Nk = 0, then the null space of N must be nonzero. Indeed, take any nonzero
vector v ∈ V , and suppose p ≥ 1 is the smallest positive integer such that Npv = 0. We know
such a p exists since Nkv = 0 (so p ≤ k). Then NNpv = Np+1v = 0, so Npv is a nonzero vector
in the null space of N . Thus 0 is an eigenvalue.

Now suppose v is a λ-eigenvector for some scalar λ. Then Nv = λv, so Nkv = λkv, but
Nkv = 0, so λkv = 0. Since v is an eigenvector, v 6= 0, so this implies that λk = 0, so λ = 0.

(b) (4 pts) Prove that if N is a nilpotent operator on Rn, then χN (t) = tn. Hint: Be careful, why
can’t χN (t) be something like t(t2 + 1)?

Solution. Let NC be the operator on Cn given by the same matrix as N . Then χNC(t) = χN (t)
splits as a polynomial over C. By (a), the only root of χNC(t) is 0, so χNC(t) = χN (t) = tn.

(c) (4 pts) Prove that if T : Cn → Cn is a linear operator such that 0 is the only eigenvalue, then
T is nilpotent.

Solution. If the only eigenvalue of T is 0, the only root of χT (t) is 0. Since χT (t) splits over C,
this means χT (t) = tn. By Cayley-Hamilton, χT (T ) = 0, which is exactly to say that Tn = 0.

(d) (4 pts) Give an example of a matrix A : Rn → Rn for which 0 is the only eigenvalue, but A is
not nilpotent. Justify why your example is not nilpotent.

Solution. The hint to part (b) is the solution here. One can take A to be the operator on R3

given by

A =

 0 −1 0
1 0 0
0 0 0


Its characteristic polynomial is −t(t2 + 1), so by (b) it is not nilpotent.

Another way to see that it is not nilpotent is to note that Span{e1, e2} is an invariant subspace
on which A is invertible.
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6. (7 pts) Find the determinant of the matrix

A = det


−4 9 −14 15

1 −2 3 −12
−5 12 −14 19
−9 22 −20 31


Solution. Typo here: The “det” should be deleted. One should evaluate this determinant using the
method of elementary row operations. Swapping the first and second rows, we then use the resulting
first row to kill 0 below it (in the first column). We then continue with this process for the remaining
columns. The status after doing this to each column is:


1 −2 3 −12
0 1 −2 −33
0 2 1 −41
0 4 7 −77

 


1 −2 3 −12
0 1 −2 −33
0 0 5 25
0 0 15 55

 


1 −2 3 −12
0 1 −2 −33
0 0 1 5
0 0 15 55



 


1 −2 3 −12
0 1 −2 −33
0 0 1 5
0 0 0 −20


Along the way, the only operations that change the determinant is swapping two rows, and dividing
a row by 5. Together, this modifiies the determinant by dividing by −5. Since the determinant of
the last matrix above is −20, det(A) = (−5 · −20) = 100.

7. Suppose a matrix A ∈M3(R) satisfies A3 = I.

(a) (3 pts) Show that det(A) = 1.

Solution. Since determinants are multiplicative, det(A3) = det(AAA) = det(A) det(A) det(A) =
det(A)3. Then

det(A)3 = det(A3) = det(I) = 1

Thus det(A) is a real number whose cube is 1, so it must be 1.

(b) (6 pts) Prove that 1 must be an eigenvalue of A. Hint: What are the possiblities for the
minimal polynomial of A as a matrix over C? Note that the polynomial t3 − 1 factors as
t3− 1 = (t− 1)(t2 + t+ 1), and t2 + t+ 1 = (t− ζ)(t− ζ2), where ζ ∈ C−R and satisfies ζ3 = 1.

Solution. Let f(t) := t3 − 1, and let p(t) denote the minimal polynomial of A as a matrix
over C. Then A satisfies f(t), so p(t) divides f(t). Over C, f(t) factors as (t− 1)(t2 + t+ 1) =
(t − 1)(t − ζ)(t − ζ2). If t − 1 divides p(t), then since p(t) divides χA(t), 1 is a root of χA(t),
so 1 is an eigenvalue. If t − 1 doesn’t divide p(t), then the only way for this to happen is if
p(t) = (t− ζ), (t− ζ2), or (t− ζ)(t− ζ2). Since A has coefficients in R and ζ, ζ2 are not in R,
A cannot possibly satisfy t − ζ or t − ζ2. If p(t) = (t − ζ)(t − ζ2), then its constant term is 1.
Writing χA(t) = −p(t)(t − a), χA(t) has constant term a. Since the constant term of χA(t) is
also det(A) = 1, it follows that a = 1, so (t− 1) divides χA(t), so 1 is an eigenvalue.
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8. Let U = Span{(1, 1, 0), (1, 0, 1))} ⊂ R3, and let W = Span{(1, 0, 0), (4, 1, 2)}.

(a) (5 pts) Find a basis for U ∩W . Hint: Set up a vector equation that describes elements of U ∩W .

Solution. An element v ∈ U ∩W can be simultaneously written as a linear combination of
(1, 1, 0) and (1, 0, 1), as well as a linear combination of (1, 0, 0), (4, 1, 2). Thus we can write

v = a(1, 1, 0) + b(1, 0, 1) = c(1, 0, 0) + d(4, 1, 2)

The latter equation is equivalent to a(1, 0, 0) + b(1, 0, 1) − c(1, 0, 0) − d(4, 1, 2). Equivalently,
this is  1 1 −1 −4

1 0 0 −1
0 1 0 −2



a
b
c
d

 =

 0
0
0


Solving this, we find that there is exactly one free variable d, and a, b, c are subject to the
conditions a = d, b = 2d, c = a+ b− 4d. Thus, it follows that the intersection is 1-dimensional,
spanned by any nonzero vector. Such a nonzero vector can be obtained by setting d = 1, so
that a = 1, b = 2, c = −1, corresponding to the vector

1 · (1, 1, 0) + 2 · (1, 0, 1) = (3, 1, 2) = −1 · (1, 0, 0) + 1 · (4, 1, 2)

Thus {(3, 1, 2)} is a basis for U ∩W .

(b) (3 pts) Find a matrix A such that U ∩W = N(A).

Solution. This question is unintentionally a bit silly, but at least it is easy given part (a). You
can take the matrix

A =

 1 −1 −1
1 −3 0
0 0 0


Without using part (a), one can also consider the matrix associated to the map f coming from
9c, but this requires some massaging.

(c) (5 pts) Show that dim(U +W ) = dimU + dimW − dim(U ∩W ).

Solution. We know that dimU = dimW = 2, and dim(U ∩ W ) = 1. The latter can be
deduced from (a), but it can also be deduced from the fact that the intersection of two planes
in R3 must have dimension at least 1 and at most 2. The intersection is 2 dimensional if and
only if the planes are equal, but since (1, 0, 0) is not in U , the planes are not equal, so the
intersection has dimension 1. Indeed, one can easily check that (1, 1, 0), (1, 0, 1), (1, 0, 0) spans
R3, so (1, 0, 0) /∈ U . This also shows that U +W = R3, which proves the desired equality.

9. Let U,W be finite dimensional vector spaces. The direct product U×W is the vector space U×W :=
{(u,w) | u ∈ U,w ∈W} where addition and scalar multiplication are given by

(u,w) + (u′, w′) := (u+ u′, w + w′), a · (u,w) := (au, aw) for any a ∈ F , u, u′ ∈ U , w,w′ ∈W

(a) (2 pts) Prove that the zero vector in U ×W is (0, 0).

Solution. If (u,w) ∈ U ×W , so (u,w) + (0, 0) = (u+ 0, w+ 0) = (u,w). This shows that (0, 0)
is the zero vector.
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(b) (5 pts) (Continued from previous page) Prove that dimU ×W = dimU + dimW

Solution. Let β = {β1, . . . , βn} and γ = {γ1, . . . , γm} be bases of U,W respectively. Then it’s
clear that α := {(β1, 0), . . . , (βn, 0), (0, γ1), . . . , (0, γn)} spans U ×W . It remains to show that
α is linearly independent. A general linear combination takes the form

(b1β1 + · · ·+ bnβn, c1γ1 + · · ·+ cnγn)

But this is equal to the zero vector (0, 0) if and only if each coordinate is 0, which forces all the
coefficients bi, ci to be 0 since β, γ are linearly independent. Thus it follows that α is linearly
independent.

(c) (5 pts) Assume furthermore that U,W are both subspaces of a finite dimensional space V . Let
f be the map

f : U ×W −→ U +W defined by f(u,w) = u− w

Prove that f is linear and surjective.

Solution. Let v ∈ U +W , then we can write v = u+ w for u ∈ U,w ∈ W . Then f(u,−w) =
u+ w = v, so f is surjective. To check that it is linear, let u′ ∈ U,w′ ∈W , and a ∈ F , then

f(a(u,w)) = f(au, aw) = au− aw = a(u− w) = af(u,w)

and

f((u,w) + (u′, w′)) = f(u+u′, w+w′) = u+u′−w−w′ = u−w+u′−w′ = f(u,w) + f(u′, w′)

This shows that f is linear.

(d) (5 pts) With the same assumptions as in part (c), Prove that

dim(U +W ) = dimU + dimW − dim(U ∩W )

Hint: Show that the null space of f is isomorphic to W1 ∩W2.

Solution. The null space of f consists of precisely the vectors (u,w) such that u − w = 0,
i.e. u = w, so the null space of f is exactly the set N(f) = {(v, v) | v ∈ U ∩W}. The map
U ∩W → N(f) given by v 7→ (v, v) is linear, and obviously both 1-1 and onto. Thus U ∩W is
isomorphic to N(f), and hence dim(U ∩W ) = dimN(f). Using the rank-nullity theorem,

dimU + dimW = dim(U ×W ) = dimN(f) + dimR(f) = dim(U ∩W ) + dim(U +W )

Rearranging a bit gets us the desired formula.
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10. Suppose T : R3 → R2 is the linear map with matrix

[T ]stdstd =

[
1 2 3
4 5 6

]
Let T ∗ be the linear map T ∗ : L(R2,R)→ L(R3,R) given by

T ∗(f) = f ◦ T

The vector space L(Rk,R) is sometimes called the dual space of Rk, and is sometimes denoted (Rk)∗.
Let e∗1, . . . , e∗k ∈ L(Rk,R) be defined by

e∗i (ej) =

{
1 if i = j
0 if i 6= j

(a) (7 pts) Show that e∗1, . . . , e∗k is a basis for L(Rk,R). Hint: Recall that the map Ψ : L(Rk,R) −→
M1×k(R) sending g : Rk → R to the matrix [g]stdstd is an isomorphism. What is Ψ(e∗i )?

Solution. The matrix of e∗i is just the row vector (or 1 × k matrix) eTi ∈ M1×k(R), where
T denotes transpose (if we view ei as a column vector). It’s obvious that the row vectors
{eT1 , . . . , eTk } form a basis for M1×k(R), so the image of {e∗1, . . . , e∗k} is a basis. Since Ψ is an
isomorphism, this implies that e∗1, . . . , e∗k are a basis for L(Rk,R).

(b) (8 pts) Let β = {e∗1, e∗2} and γ = {e∗1, e∗2, e∗3}. Find the matrix [T ∗]γβ .

Solution. One checks that

T ∗(e∗1) = [1 0] ·
[

1 2 3
4 5 6

]
= [1 2 3] = 1e∗1 + 2e∗2 + 3e∗3

and

T ∗(e∗2) = [0 1] ·
[

1 2 3
4 5 6

]
= [4 5 6] = 4e∗1 + 5e∗2 + 6e∗3

Thus

[T ∗]γβ =

 1 4
2 5
3 6


This is just the transpose of [T ].
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11. (15 pts) Find a Jordan canonical form, a Jordan canonical basis, the minimal polynomial, character-
istic polynomial, and determinant of the matrix

A =

 2 1 0
−4 3 −12
−1 0 −1


Hint: 1 is an eigenvalue.

Solution. Cofactor expanding along the bottom row, the characteristic polynomial is

χA(t) = −1(−12)+(−1−t)((2−t)(3−t)+4) = 12−(t+1)(t2−5t+6+4) = 12−(t3−4t2+5t+10) = −t3+4t2−5t+2

Since 1 is an eigenvalue, (t−1) divides χA(t). Dividing by (t−1), we find that χA(t) = −(t−1)2(t−2).

One computes that N(A− 2I) = Span{(3, 0,−1}, so (3, 0,−1) is a basis of cycles for K2.

Next, one finds that N(A− I) = Span{(2,−2,−1)}, so the dot diagram for the eigenvalue 1 consists
of a single column. Next, we find that N((A − I)2) = Span{(1, 1, 0), (0, 4, 1)}. It follows that we
can take the cycle basis for K1 to be the cycle generated by (1, 1, 0). The corresponding cycle
is {(2,−2,−1), (1, 1, 0)}. Thus a Jordan canonical basis is {(2,−2,−1), (1, 1, 0), (3, 0,−1)}. The
associated Jordan canonical form is  1 1 0

0 1 0
0 0 2


With determinant 2, and minimal polynomial (t− 1)2(t− 2).

9



MATH 350 EXAM 2

12. Suppose T : V → V is a linear operator with χT (t) = t2(t− 1)4(t− 2)6. Let Uλ := T − λI. Suppose
that dimN(U0) = 1, dimN(U1) = 3, dimN(U2) = 3, and dimN(U2

2 ) = 5.

(a) (4 pts) Find the dot diagrams for the eigenvalues 0, 1, 2. Is T diagonalizable?

Solution. The dot diagrams for 0,1,2 are, respectively,

λ = 0 :
•
• λ = 1 :

• • •
• λ = 2 :

• • •
• •
•

(b) (4 pts) Find a Jordan canonical form of T .

Solution. From the dot diagram, a Jordan canonical form is



0 1
0 0

1 1
0 1

1
1

2 1 0
0 2 1
0 0 2

2 1
0 2

2


Where all unlabelled entries are 0.

(c) (5 pts) Let p(t) be the minimal polynomial of T . Since p(t) divides χT (t), there exist integers
r0, r1, r2 ≥ 0 such that p(t) = tr0(t− 1)r1(t− 2)r2 , where r0 ≤ 2, r1 ≤ 4, r2 ≤ 6. Find r0, r1, r2,
and briefly justify why the resulting polynomial is the polynomial of minimum positive degree
such that p(T ) = 0.

Solution. r0 = 2, r1 = 2, r2 = 3. Since each Uλ acts as an isomorphism on Kµ for µ 6= λ, the
rλ’s can be individually computed for each Kλ. We need r0 = 2 since U0 does not kill K0 but
U2
0 does. We need r1 = 2 since U1 doesn’t kill K1 but U2

1 does. We need r2 = 3 since U2, U
2
2 do

not kill K2, but U3
2 does.

(d) (5 pts) Suppose there is a vector v ∈ N(U3
2 ) − N(U2

2 ). Suppose w ∈ N(U2
2 ) is a vector which

does not lie in SpanCv +N(U2). Show that Cv ∩Cw = ∅ and Cv ∪Cw is linearly independent.
Is Cv ∪ Cw a basis of K2? If not, briefly describe how to extend Cv ∪ Cw to a basis for K2.

Solution. Recall that Cv = {U2
2 v, U2v, v}. Clearly w /∈ Cv. Suppose U2w lies in the span of

U2
2 v, then U2w = aU2

2 v for some scalar a. Then U2(w − aU2v) = 0, so w − aU2v ∈ N(U2), so

w = aU2v + (w − aU2v)

But aU2v ∈ SpanCv, and w − aU2v ∈ N(U2), so that w ∈ SpanCv +N(U2), which contradicts
our assumption on w. It follows that U2w is independent of U2

2 v, so that the cycles Cv, Cw are
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linearly independent and disjoint by theorem 7.6 in the book. Since K2 is 6-dimensional and
Cv ∪Cw only has 5 elements, it does not give a basis of K2. To complete it to a basis, you can
add any vector z ∈ N(U2)− Span{U2

2 v, U2w} to Cv ∪ Cw.

11


