## EXAM 2

This is an closed book, closed notes exam. No calculators are allowed.

Useful shorthand: Feel free to write:

- "LI" instead of "linearly independent"
- "LD" instead of "linearly dependent"
- "LT" instead of "linear transformation"
- "v.s." instead of "vector space"
- "f.d.", or "fin. dim." instead of "finite dimensional". You can also write " $\operatorname{dim} V<\infty$ " for " $V$ is finite dimensional".

If you use this, make sure you write very clearly.
Reminders: A linear operator on a vector space $V$ is a linear map $T: V \rightarrow V$. If $T$ is a linear operator on a vector space $V$, and $W \subset V$ is $T$-invariant, then $T_{W}$ denotes the linear operator $T_{W}: W \rightarrow W$ given by $T_{W}(w)=T(w)$. Also, if $v \in V$, then the $T$-invariant subspace generated by $v$ is $\langle v\rangle_{T}:=$ $\operatorname{Span}\left\{v, T v, T^{2} v, \ldots\right\}$.

For a linear operator $T: V \rightarrow V$, if $\beta$ is a basis of $V$, then $[T]_{\beta}$ denotes the matrix of $T$ w.r.t. the basis $\beta$. If $V=\mathbb{R}^{n}, \operatorname{std}:=\left\{e_{1}, \ldots, e_{n}\right\}$ denotes the standard basis.

If you are asked to prove and if and only if (" $\Longleftrightarrow "$ ), then you must prove both directions. If you are asked to prove that two sets $A, B$ are equal, then you must prove $A \subset B$ and $B \subset A$.

Every vector space is implicitly over some field $F$. Recall the definition of a field:
Definition 0.0.1 (Fields). A field $F$ is a set with two operations $+: F \times F \rightarrow F$ and $\cdot: F \times F \rightarrow F$, such that the following hold for all $a, b, c \in F$ :
(F1) $a+b=b+a$ and $a \cdot b=b \cdot a$
(F2) $(a+b)+c=a+(b+c)$ and $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
(F3) There exist distinct elements " 0 " and " 1 " in $F$ such that

$$
0+a=a \quad \text { and } \quad 1 \cdot a=a
$$

(F4) For each $a \in F$ and nonzero $b \in F$, there exist elements $c, d \in F$ such that

$$
a+c=0 \quad \text { and } \quad b \cdot d=1
$$

(F5) $a \cdot(b+c)=a \cdot b+a \cdot c$
In F4, $c$ is called the negative of $a$, denoted " $-a$ ", and $d$ is called the multiplicative inverse of $b$, denoted " $b^{-1}$ " or " $1 / b$ ".

1. (24 points, 3 points each) Label the following statements (T)rue or (F)alse. Include a short justification of your answer.
(a) If $\lambda$ is an eigenvalue of a linear operator $T$ on $V$, then $E_{\lambda}:=\{v \in V \mid T v=\lambda v\}$ is the span of the $\lambda$-eigenvectors.
(b) If $T$ is a linear operator on a 2-dimensional vector space, then $T$ is diagonalizable if and only if it has at least one eigenvalue.
(c) If $\operatorname{dim} V<\infty, T: V \rightarrow V$ is linear, and $\beta, \beta^{\prime}$ are two bases for $V$, then $[T]_{\beta}$ and $[T]_{\beta^{\prime}}$ have the same characteristic polynomial.
(d) If $T$ is a linear operator on a finite dimensional vector space, then $T$ is $1-1$ if and only if it is onto.
(e) Let $T$ be a linear operator on a vector space $V$ with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. If $S_{i}$ is a linearly independent subset of $E_{\lambda_{i}}$, then $S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ is linearly independent.
(f) If $A \in M_{n}(F)$ and $\mu \in F$, then $\operatorname{det}(\mu A)=\mu \operatorname{det}(A)$.
(g) If $A, B \in M_{n}(F)$, then $\operatorname{det}(A B)=\operatorname{det}(B A)$.
(h) The linear map $T: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ given by $T(f(x))=f^{\prime}(x)$ has no eigenvalues.
2. (10 pts) Let $T: V \rightarrow V$ be a linear operator. Let $\mu, \lambda$ be two distinct eigenvalues of $T$. Show that $E_{\mu} \cap E_{\lambda}=0$.
3. (a) ( 8 pts ) Show that 0 is an eigenvalue of the matrix $X$ with a 1 -dimensional eigenspace. Hint: Don't try to compute the characteristic polynomial.

$$
X=\left[\begin{array}{rrrr}
1 & -3 & -1 & 2 \\
3 & -8 & -1 & 5 \\
5 & -14 & 0 & 10 \\
-2 & 6 & 5 & -3
\end{array}\right]
$$

(b) (3 pts) What is $\operatorname{det}(X)$ ?
4. (10 pts) Is the matrix

$$
A:=\left[\begin{array}{rrr}
1 & 0 & 2 \\
-1 & 3 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

diagonalizable? If so, find a diagonal matrix $D$ and an invertible matrix $Q$ such that $Q^{-1} A Q=D$.
5. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be given by:

$$
T(x, y, z, w)=(x+y+2 z-w, x+2 y+3 z-w,-x+3 y+2 z+w, 3 y+2 z+2 w)
$$

(a) (5 pts) Let $W:=\left\langle e_{1}\right\rangle_{T}$ be the $T$-invariant subspace generated by $e_{1}$. Show that $\operatorname{dim} W=3$. Hint: It may help to write down the matrix $[T]_{\text {std }}$.
(b) (4 pts) Find the matrix of $T_{W}$ with respect to the basis $\left\{e_{1}, T e_{1}, T^{2} e_{1}\right\}$ of $W$.
(c) (4 pts) Find the characteristic polynomial of $T_{W}$.
(d) (5 pts) Is the characteristic polynomial of $T$ split (over $\mathbb{R}$ )? Why?
(e) (5 pts) Is $T_{W}$ diagonalizable? Is $T$ diagonalizable? Why?
6. (10 points) Suppose $T$ is a linear operator on a 4 -dimensional vector space $V \operatorname{with} \operatorname{det}(T)=0$. Suppose $W \subset V$ is a 3 -dimensional $T$-invariant subspace such that $T_{W}$ is diagonalizable and $\operatorname{det}\left(T_{W}\right) \neq 0$. Prove that $T$ is diagonalizable.
7. Every complex number can be represented uniquely as a sum $a+b i$, where $a, b \in \mathbb{R}$. One can check that $\mathbb{C}$ is a vector space over $\mathbb{R}$ with basis $\beta=\{1, i\}$. If $z=a+b i \in \mathbb{C}$, write $m_{z}: \mathbb{C} \rightarrow \mathbb{C}$ for the "multiplication map" $m_{z}(w)=z w$.
(a) (2 pts) Show that $m_{z}: \mathbb{C} \rightarrow \mathbb{C}$ is a linear map of $\mathbb{R}$-vector spaces.
(b) (4 pts) Find the matrix $\left[m_{z}\right]_{\beta}$ in terms of $a$ and $b$.
(c) (3 pts) Compute the eigenvalues of $\left[m_{z}\right]_{\beta}$ viewed as a matrix in $M_{2}(\mathbb{C})$.
(d) (3 pts) Find the matrix $\left[m_{i}\right]_{\beta}$, where $i \in \mathbb{C}$ is the imaginary unit. Describe how $m_{i}$ acts geometrically on the complex plane.

