MATH 350

EXAM 2

This is an closed book, closed notes exam. No calculators are allowed.

Useful shorthand: Feel free to write:

- "LI" instead of "linearly independent"
- "LD" instead of "linearly dependent"
- "LT" instead of "linear transformation"
- "v.s." instead of "vector space"
- "f.d.", or "fin. dim." instead of "finite dimensional". You can also write "dim $V < \infty$ " for "V is finite dimensional".

If you use this, make sure you write **very clearly**.

Reminders: A linear operator on a vector space V is a linear map $T: V \to V$. If T is a linear operator on a vector space V, and $W \subset V$ is T-invariant, then T_W denotes the linear operator $T_W: W \to W$ given by $T_W(w) = T(w)$. Also, if $v \in V$, then the T-invariant subspace generated by v is $\langle v \rangle_T :=$ $\text{Span}\{v, Tv, T^2v, \ldots\}$.

For a linear operator $T: V \to V$, if β is a basis of V, then $[T]_{\beta}$ denotes the matrix of T w.r.t. the basis β . If $V = \mathbb{R}^n$, std := $\{e_1, \ldots, e_n\}$ denotes the standard basis.

If you are asked to prove and if and only if (" \iff "), then you must prove both directions. If you are asked to prove that two sets A, B are equal, then you must prove $A \subset B$ and $B \subset A$.

Every vector space is implicitly over some field F. Recall the definition of a field:

Definition 0.0.1 (Fields). A field F is a set with two operations $+ : F \times F \to F$ and $\cdot : F \times F \to F$, such that the following hold for all $a, b, c \in F$:

(F1) a + b = b + a and $a \cdot b = b \cdot a$

(F2) (a+b)+c = a + (b+c) and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

(F3) There exist distinct elements "0" and "1" in F such that

$$0 + a = a$$
 and $1 \cdot a = a$

(F4) For each $a \in F$ and nonzero $b \in F$, there exist elements $c, d \in F$ such that

$$a + c = 0$$
 and $b \cdot d = 1$

(F5) $a \cdot (b+c) = a \cdot b + a \cdot c$

In F4, c is called the negative of a, denoted "-a", and d is called the multiplicative inverse of b, denoted " b^{-1} " or "1/b".

- 1. (24 points, 3 points each) Label the following statements (T)rue or (F)alse. Include a short justification of your answer.
 - (a) If λ is an eigenvalue of a linear operator T on V, then $E_{\lambda} := \{v \in V \mid Tv = \lambda v\}$ is the span of the λ -eigenvectors.
 - (b) If T is a linear operator on a 2-dimensional vector space, then T is diagonalizable if and only if it has at least one eigenvalue.
 - (c) If dim $V < \infty$, $T: V \to V$ is linear, and β, β' are two bases for V, then $[T]_{\beta}$ and $[T]_{\beta'}$ have the same characteristic polynomial.
 - (d) If T is a linear operator on a finite dimensional vector space, then T is 1-1 if and only if it is onto.
 - (e) Let T be a linear operator on a vector space V with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. If S_i is a linearly independent subset of E_{λ_i} , then $S_1 \cup S_2 \cup \cdots \cup S_k$ is linearly independent.
 - (f) If $A \in M_n(F)$ and $\mu \in F$, then $\det(\mu A) = \mu \det(A)$.
 - (g) If $A, B \in M_n(F)$, then $\det(AB) = \det(BA)$.
 - (h) The linear map $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ given by T(f(x)) = f'(x) has no eigenvalues.

2. (10 pts) Let $T: V \to V$ be a linear operator. Let μ, λ be two distinct eigenvalues of T. Show that $E_{\mu} \cap E_{\lambda} = 0$.

3. (a) (8 pts) Show that 0 is an eigenvalue of the matrix X with a 1-dimensional eigenspace. Hint: Don't try to compute the characteristic polynomial.

X =	1	-3	-1	2]
	3	-8	-1	5
	5	$-3 \\ -8 \\ -14$	0	$\begin{bmatrix} 10\\ -3 \end{bmatrix}$
	-2	6	5	-3

(b) (3 pts) What is det(X)?

4. (10 pts) Is the matrix

$$A := \left[\begin{array}{rrrr} 1 & 0 & 2 \\ -1 & 3 & 1 \\ 1 & 0 & 2 \end{array} \right]$$

diagonalizable? If so, find a diagonal matrix D and an invertible matrix Q such that $Q^{-1}AQ = D$.

5. Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be given by:

T(x, y, z, w) = (x + y + 2z - w, x + 2y + 3z - w, -x + 3y + 2z + w, 3y + 2z + 2w)

(a) (5 pts) Let $W := \langle e_1 \rangle_T$ be the *T*-invariant subspace generated by e_1 . Show that dim W = 3. Hint: It may help to write down the matrix $[T]_{\text{std}}$.

(b) (4 pts) Find the matrix of T_W with respect to the basis $\{e_1, Te_1, T^2e_1\}$ of W.

(c) (4 pts) Find the characteristic polynomial of T_W .

(d) (5 pts) Is the characteristic polynomial of T split (over \mathbb{R})? Why?

(e) (5 pts) Is T_W diagonalizable? Is T diagonalizable? Why?

6. (10 points) Suppose T is a linear operator on a 4-dimensional vector space V with $\det(T) = 0$. Suppose $W \subset V$ is a 3-dimensional T-invariant subspace such that T_W is diagonalizable and $\det(T_W) \neq 0$. Prove that T is diagonalizable.

- 7. Every complex number can be represented uniquely as a sum a + bi, where $a, b \in \mathbb{R}$. One can check that \mathbb{C} is a vector space over \mathbb{R} with basis $\beta = \{1, i\}$. If $z = a + bi \in \mathbb{C}$, write $m_z : \mathbb{C} \to \mathbb{C}$ for the "multiplication map" $m_z(w) = zw$.
 - (a) (2 pts) Show that $m_z : \mathbb{C} \to \mathbb{C}$ is a linear map of \mathbb{R} -vector spaces.

- (b) (4 pts) Find the matrix $[m_z]_\beta$ in terms of a and b.
- (c) (3 pts) Compute the eigenvalues of $[m_z]_\beta$ viewed as a matrix in $M_2(\mathbb{C})$.
- (d) (3 pts) Find the matrix $[m_i]_{\beta}$, where $i \in \mathbb{C}$ is the imaginary unit. Describe how m_i acts geometrically on the complex plane.