
MATH 350 Name: ********************

EXAM 2 SOLUTIONS

This is an closed book, closed notes exam. No calculators are allowed.

Useful shorthand: Feel free to write:

• “LI” instead of “linearly independent”

• “LD” instead of “linearly dependent”

• “LT” instead of “linear transformation”

• “v.s.” instead of “vector space”

• “f.d.”, or “fin. dim.” instead of “finite dimensional”. You can also write “dimV <∞” for “V is finite
dimensional”.

If you use this, make sure you write very clearly.

Reminders: A linear operator on a vector space V is a linear map T : V → V . If T is a linear operator
on a vector space V , and W ⊂ V is T -invariant, then TW denotes the linear operator TW : W → W
given by TW (w) = T (w). Also, if v ∈ V , then the T -invariant subspace generated by v is 〈v〉T :=
Span{v, Tv, T 2v, . . .}.

For a linear operator T : V → V , if β is a basis of V , then [T ]β denotes the matrix of T w.r.t. the basis
β. If V = Rn, std := {e1, . . . , en} denotes the standard basis.

If you are asked to prove and if and only if (“ ⇐⇒ ”), then you must prove both directions. If you are asked
to prove that two sets A,B are equal, then you must prove A ⊂ B and B ⊂ A.

Every vector space is implicitly over some field F . Recall the definition of a field:

Definition 0.0.1 (Fields). A field F is a set with two operations + : F × F → F and · : F × F → F ,
such that the following hold for all a, b, c ∈ F :

(F1) a+ b = b+ a and a · b = b · a

(F2) (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c)

(F3) There exist distinct elements “0” and “1” in F such that

0 + a = a and 1 · a = a

(F4) For each a ∈ F and nonzero b ∈ F , there exist elements c, d ∈ F such that

a+ c = 0 and b · d = 1

(F5) a · (b+ c) = a · b+ a · c

In F4, c is called the negative of a, denoted “−a”, and d is called the multiplicative inverse of b, denoted
“b−1” or “1/b”.
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1. (24 points, 3 points each) Label the following statements (T)rue or (F)alse. Include a short justifi-
cation of your answer.

(a) If λ is an eigenvalue of a linear operator T on V , then Eλ := {v ∈ V | Tv = λv} is the span of
the λ-eigenvectors.

Solution. TRUE. Every nonzero vector in Eλ is a λ-eigenvector, and any vector space is
spanned by its nonzero vectors.

(b) If T is a linear operator on a 2-dimensional vector space, then T is diagonalizable if and only if
it has at least one eigenvalue.

Solution. FALSE. Take for example T = [ 1 1
0 1 ] on R2.

(c) If dimV <∞, T : V → V is linear, and β, β′ are two bases for V , then [T ]β and [T ]β′ have the
same characteristic polynomial.

Solution. TRUE. Let Q := [I]β
′

β , then [T ]β = Q−1[T ]β′Q, so [T ]β is similar to [T ]β′ , so they
have the same characteristic polynomial.

(d) If T is a linear operator on a finite dimensional vector space, then T is 1-1 if and only if it is
onto.

Solution. TRUE. By rank-nullity, nullity(T ) + rank(T ) = dimV . Thus T is 1-1 if and only if
nullity(T ) = 0 if and only if rank(T ) = dimV if and only if T is onto.

(e) Let T be a linear operator on a vector space V with distinct eigenvalues λ1, . . . , λk. If Si is a
linearly independent subset of Eλi , then S1 ∪ S2 ∪ · · · ∪ Sk is linearly independent.

Solution. TRUE. This is theorem 5.5 in the book.

(f) If A ∈Mn(F ) and µ ∈ F , then det(µA) = µdet(A).

Solution. FALSE. Take A = [ 1 0
0 1 ], then det(2A) = 4 which is not equal to 2 det(A) = 2.

(g) If A,B ∈Mn(F ), then det(AB) = det(BA).

Solution. TRUE. We know det(AB) = det(A) det(B) and det(BA) = det(B) det(A), but
det(A) det(B) = det(B) det(A) since determinants lie in F and xy = yx in any field.

(h) The linear map T : P3(R)→ P3(R) given by T (f(x)) = f ′(x) has no eigenvalues.

Solution. FALSE, it has 0 has a eigenvalue, since T (x) = 0.
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2. (10 pts) Let T : V → V be a linear operator. Let µ, λ be two distinct eigenvalues of T . Show that
Eµ ∩ Eλ = 0.

Proof. Suppose v ∈ Eµ ∩ Eλ. Since v ∈ Eµ, we know Tv = µv. Since v ∈ Eλ, we know Tv = λv.
Thus we have µv = λv, so µv − λv = ~0, so

(µ− λ)v = ~0

Since µ 6= λ, µ− λ 6= 0, so it has an inverse in F . Multiplicying both sides of the above equation by
its inverse, we get

v = (µ− λ)−1~0 = ~0

This shows that any vector in Eµ ∩ Eλ must be equal to 0, as desired.

3. (a) (8 pts) Show that 0 is an eigenvalue of the matrix X with a 1-dimensional eigenspace. Hint:
Don’t try to compute the characteristic polynomial.

X =


1 −3 −1 2
3 −8 −1 5
5 −14 0 10
−2 6 5 −3


Proof. Computing determinants of 4x4 matrices without a lot of zeroes is very cumbersome.
Instead, we will directly calculate the null space N(X) and show that it is 1-dimensional. For
this we simply row reduce. Using the first row to make zeroes in the first column, we get

 


1 −3 −1 2
0 1 2 −1
0 1 5 0
0 0 3 1


Doing the same with the second and third columns, we get

 


1 −3 −1 2
0 1 2 −1
0 0 3 1
0 0 3 1

 


1 −3 −1 2
0 1 2 −1
0 0 3 1
0 0 0 0


It follows that there are 3 pivots, so X has rank 3 and hence nullity 1. Since the eigenspace for
the eigenvalue 0 is N(X − 0I) = N(X), this shows that the 0-eigenspace is 1-dimensional.

(b) (3 pts) What is det(X)?

Solution. Since X has positive nullity, it is not invertible, so det(X) = 0. In general, we have:

det(X) = 0 ⇐⇒ 0 is an eigenvalue of X ⇐⇒ N(X) 6= 0
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4. (10 pts) Is the matrix

A :=

 1 0 2
−1 3 1
1 0 2


diagonalizable? If so, find a diagonal matrix D and an invertible matrix Q such that Q−1AQ = D.

Solution. Since A has two identical rows, clearly rank(A) ≤ 2, so nullity(A) ≥ 1, so 0 is an
eigenvalue of A. However to check for diagonalizability, we need to understand its other eigenvalues.
Its characteristic polynomial can be computed by cofactor expansion along the first row:

χA(t) = det

 1− t 0 2
−1 3− t 1
1 0 2− t

 = (1− t) det
[
3− t 1

0 2− t

]
+ 2det

[
−1 3− t
1 0

]
· · · = (1− t)(3− t)(2− t)− 2(3− t) = (t2 − 3t+ 2)(3− t)− 2(3− t) = (t2 − 3t)(3− t) = −t(t− 3)2

It follows that the eigenvalues of A are 0, 3 with multiplicities 1 and 2 respectively. To check for
diagonalizability, it suffices to show that the 3-eigenspace E3 is 2-dimensional. For this, we need to
compute

N(A− 3I) = N

 −2 0 2
−1 0 1
1 0 −1

 = Span


 1

0
1

 ,
 0

1
0


It follows that E3 is 2-dimensional, with basis (1, 0, 1), (0, 1, 0), so A is diagonalizable. To compute
Q, we must find a basis for each eigenspace. We already did this for E3. For E0, we have N(A−0I) =
N(A). This can be computed by row-reduction. Performing a sequence of elementary row operations,
we get

A =

 1 0 2
−1 3 1
1 0 2

 Z1A =

 1 0 2
0 3 3
0 0 0

 Z2Z1A =

 1 0 2
0 1 1
0 0 0


Where Z1, Z2 are each a product of elementary matrices. Clearly

N(Z2Z1A) = Span


 −2−1

1


But since N(A) = N(Z2Z1A), it follows that (−2,−1, 1) is a basis for E0 = N(A). This can also be
verified directly by checking that A · (−2,−1, 1) = ~0. Thus, we find that

β =


 −2−1

1

 ,
 1

0
1

 ,
 0

1
0


is an eigenbasis for A. Thus we can take Q to be any matrix which sends the standard basis to the
eigenbasis (in whatever order). If we send ei 7→ βi, then we should take Q to be

Q =

 −2 1 0
−1 0 1
1 1 0

 , in which case Q−1AQ = D =

 0 0 0
0 3 0
0 0 3
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5. Let T : R4 → R4 be given by:

T (x, y, z, w) = (x+ y + 2z − w, x+ 2y + 3z − w,−x+ 3y + 2z + w, 3y + 2z + 2w)

(a) (5 pts) Let W := 〈e1〉T be the T -invariant subspace generated by e1. Show that dimW = 3.
Hint: It may help to write down the matrix [T ]std.

Solution. The matrix for T is:

[T ] =


1 1 2 −1
1 2 3 −1
−1 3 2 1
0 3 2 2

 , and e1 =


1
0
0
0

 , T e1 =


1
1
−1
0

 , T 2e1 =


0
0
0
1

 , T 3e1 =


−1
−1
1
2


It’s easy to see that the first three vectors are linearly independent, whereas T 3e1 = 2T 2e1−Te1.
Thus W = 〈e1〉T is 3-dimensional.

(b) (4 pts) Find the matrix of TW with respect to the basis {e1, T e1, T 2e1} of W .

Solution. Let β = {e1, T e1, T 2e1}. By Theorem 5.21 in the book, we have

[TW ]β =

 0 0 0
1 0 −1
0 1 2


(c) (4 pts) Find the characteristic polynomial of TW .

Solution. By Theorem 5.21 in the book, the characteristic polynomial of TW is χTW (t) =
(−1)3(t− 2t2 + t3) = −t(t2 − 2t+ 1) = −t(t− 1)2.

(d) (5 pts) Is the characteristic polynomial of T split (over R)? Why?

Solution. Yes, because χTW (t) must divide χT (t). This means that χT (t) = χTW (t)f(t) =
−t(t − 1)2f(t) for some polynomial f(t). Since χT has degree 4 and χTW has degree 3, f(t) is
degree 1, so χT (t) is split.

(e) (5 pts) Is TW diagonalizable? Is T diagonalizable? Why?

Solution. The eigenvalues of TW are 0,1. The 1-eigenspace E1 of TW has the same dim. as

N ([TW ]β − I3) = N

 −1 0 0
1 −1 −1
0 1 1


which clearly has dimension 1. Thus the 1-eigenspace of E1 has dimension 1 which is less than
the multiplicity of the eigenvalue 1. It follows that TW is not diagonalizable.

We claim that this implies that T is not diagonalizable. Suppose for the sake of a contradiction
that T is diagonalizable. Then V has an eigenbasis, so every w ∈W can be written as a1vw,1+
. . . arvw,r, where the v′w,i are eigenvectors of T with distinct eigenvalues (if there are multiple
eigenvectors for the same eigenvalue involved in the linear combination, you can treat their sum
as a single eigenvector). By §5.4 Exercise 23, this implies that vw,i lies in W for every w ∈ W
and every i. Thus, W is spanned by eigenvectors, so a maximal linear independent subset is an
eigenbasis. This shows that TW would be diagonalizable, which we already found to be false.
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6. (10 points) Suppose T is a linear operator on a 4-dimensional vector space V with det(T ) = 0. Sup-
poseW ⊂ V is a 3-dimensional T -invariant subspace such that TW is diagonalizable and det(TW ) 6= 0.
Prove that T is diagonalizable.

Proof. Since det(T ) = 0, 0 is an eigenvalue of T , so t divides χT (t). Since det(TW ) 6= 0, 0 is not an
eigenvalue of TW , so t does not divide χTW (t). Since χTW (t) has degree 3 and divides χT (t), this
means that t can divide χT (t) at most once, so it must divide χT (t) exactly once. In fact we must
have

χT (t) = −t · χTW (t)

Since TW is diagonalizable, for each root λ of χTW (t), the λ-eigenspace of TW has dimension equal
to the multiplicity of λ as a root of χTW . Since 0 is not a root of χTW , the multiplicity of λ as a root
of χTW is the same as its multiplicity as a root of χT . Since the λ-eigenspace for TW is contained in
the λ-eigenspace for T (and is already the maximum possible, equal to the multiplicity), it follows
that every eigenspace has dimension equal to the multiplicity, so T is diagonalizable.

7. Every complex number can be represented uniquely as a sum a+ bi, where a, b ∈ R. One can check
that C is a vector space over R with basis β = {1, i}. If z = a + bi ∈ C, write mz : C → C for the
“multiplication map” mz(w) = zw.

(a) (2 pts) Show that mz : C→ C is a linear map of R-vector spaces.

Proof. For additivity:

mz(w + w′) = z(w + w′) = zw + zw′ = mz(w) +mz(w
′)

Here we used the distributivity axiom “(F5)” of fields (see page 1). For scalar-multiplicativity:

mz(aw) = zaw = azw = amz(w)

Here we used the commutativity axiom “(F1)”.

(b) (4 pts) Find the matrix [mz]β in terms of a and b.

Solution. We know mz(β1) = mz(1) = z = a + bi, and mz(β2) = mz(i) = iz = ai + bi2 =
−b+ ai. Thus, we have

[mz]β =

[
a −b
b a

]
(c) (3 pts) Compute the eigenvalues of [mz]β viewed as a matrix in M2(C).

Solution. We have χ[mz ]β (t) = (a− t)2 + b2 = t2− at2 + a2 + b2. By the quadratic formula, its
roots are a+ bi, a− bi, which are the eigenvalues of [mz]β .

(d) (3 pts) Find the matrix [mi]β , where i ∈ C is the imaginary unit. Describe how mi acts
geometrically on the complex plane.

Solution. From the formula in part (b), we have [mi]β =
[
0 −1
1 0

]
. It acts on C by rotating

everything counterclockwise around the origin by 90 degrees.
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