EXAM 2 SOLUTIONS

This is an closed book, closed notes exam. No calculators are allowed.

Useful shorthand: Feel free to write:

- "LI" instead of "linearly independent"
- "LD" instead of "linearly dependent"
- "LT" instead of "linear transformation"
- "v.s." instead of "vector space"
- "f.d.", or "fin. dim." instead of "finite dimensional". You can also write "dim $V < \infty$ " for "V is finite dimensional".

If you use this, make sure you write **very clearly**.

Reminders: A linear operator on a vector space V is a linear map $T: V \to V$. If T is a linear operator on a vector space V, and $W \subset V$ is T-invariant, then T_W denotes the linear operator $T_W: W \to W$ given by $T_W(w) = T(w)$. Also, if $v \in V$, then the T-invariant subspace generated by v is $\langle v \rangle_T :=$ $\text{Span}\{v, Tv, T^2v, \ldots\}$.

For a linear operator $T: V \to V$, if β is a basis of V, then $[T]_{\beta}$ denotes the matrix of T w.r.t. the basis β . If $V = \mathbb{R}^n$, std := $\{e_1, \ldots, e_n\}$ denotes the standard basis.

If you are asked to prove and if and only if (" \iff "), then you must prove both directions. If you are asked to prove that two sets A, B are equal, then you must prove $A \subset B$ and $B \subset A$.

Every vector space is implicitly over some field F. Recall the definition of a field:

Definition 0.0.1 (Fields). A field F is a set with two operations $+ : F \times F \to F$ and $\cdot : F \times F \to F$, such that the following hold for all $a, b, c \in F$:

(F1) a + b = b + a and $a \cdot b = b \cdot a$

(F2) (a+b)+c = a + (b+c) and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

(F3) There exist distinct elements "0" and "1" in F such that

$$0 + a = a$$
 and $1 \cdot a = a$

(F4) For each $a \in F$ and nonzero $b \in F$, there exist elements $c, d \in F$ such that

$$a + c = 0$$
 and $b \cdot d = 1$

(F5) $a \cdot (b+c) = a \cdot b + a \cdot c$

In F4, c is called the negative of a, denoted "-a", and d is called the multiplicative inverse of b, denoted " b^{-1} " or "1/b".

- 1. (24 points, 3 points each) Label the following statements (T)rue or (F)alse. Include a short justification of your answer.
 - (a) If λ is an eigenvalue of a linear operator T on V, then $E_{\lambda} := \{v \in V \mid Tv = \lambda v\}$ is the span of the λ -eigenvectors.

Solution. TRUE. Every nonzero vector in E_{λ} is a λ -eigenvector, and any vector space is spanned by its nonzero vectors.

(b) If T is a linear operator on a 2-dimensional vector space, then T is diagonalizable if and only if it has at least one eigenvalue.

Solution. FALSE. Take for example $T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ on \mathbb{R}^2 .

(c) If dim $V < \infty$, $T: V \to V$ is linear, and β, β' are two bases for V, then $[T]_{\beta}$ and $[T]_{\beta'}$ have the same characteristic polynomial.

Solution. TRUE. Let $Q := [I]_{\beta}^{\beta'}$, then $[T]_{\beta} = Q^{-1}[T]_{\beta'}Q$, so $[T]_{\beta}$ is similar to $[T]_{\beta'}$, so they have the same characteristic polynomial.

(d) If T is a linear operator on a finite dimensional vector space, then T is 1-1 if and only if it is onto.

Solution. TRUE. By rank-nullity, nullity(T) + rank(T) = dim V. Thus T is 1-1 if and only if nullity(T) = 0 if and only if rank(T) = dim V if and only if T is onto.

(e) Let T be a linear operator on a vector space V with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. If S_i is a linearly independent subset of E_{λ_i} , then $S_1 \cup S_2 \cup \cdots \cup S_k$ is linearly independent.

Solution. TRUE. This is theorem 5.5 in the book.

(f) If $A \in M_n(F)$ and $\mu \in F$, then $\det(\mu A) = \mu \det(A)$.

Solution. FALSE. Take $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then det(2A) = 4 which is not equal to 2 det(A) = 2.

(g) If $A, B \in M_n(F)$, then $\det(AB) = \det(BA)$.

Solution. TRUE. We know $\det(AB) = \det(A) \det(B)$ and $\det(BA) = \det(B) \det(A)$, but $\det(A) \det(B) = \det(B) \det(A)$ since determinants lie in F and xy = yx in any field.

(h) The linear map $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ given by T(f(x)) = f'(x) has no eigenvalues.

Solution. FALSE, it has 0 has a eigenvalue, since T(x) = 0.

Proof. Suppose $v \in E_{\mu} \cap E_{\lambda}$. Since $v \in E_{\mu}$, we know $Tv = \mu v$. Since $v \in E_{\lambda}$, we know $Tv = \lambda v$. Thus we have $\mu v = \lambda v$, so $\mu v - \lambda v = \vec{0}$, so

$$(\mu - \lambda)v = \vec{0}$$

Since $\mu \neq \lambda$, $\mu - \lambda \neq 0$, so it has an inverse in F. Multiplicying both sides of the above equation by its inverse, we get

$$v = (\mu - \lambda)^{-1} \vec{0} = \vec{0}$$

This shows that any vector in $E_{\mu} \cap E_{\lambda}$ must be equal to 0, as desired.

3. (a) (8 pts) Show that 0 is an eigenvalue of the matrix X with a 1-dimensional eigenspace. Hint: Don't try to compute the characteristic polynomial.

$$X = \begin{bmatrix} 1 & -3 & -1 & 2\\ 3 & -8 & -1 & 5\\ 5 & -14 & 0 & 10\\ -2 & 6 & 5 & -3 \end{bmatrix}$$

Proof. Computing determinants of 4x4 matrices without a lot of zeroes is very cumbersome. Instead, we will directly calculate the null space N(X) and show that it is 1-dimensional. For this we simply row reduce. Using the first row to make zeroes in the first column, we get

$$\rightsquigarrow \left[\begin{array}{rrrr} 1 & -3 & -1 & 2 \\ 0 & 1 & 2 & -1 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 3 & 1 \end{array} \right]$$

Doing the same with the second and third columns, we get

$$\rightsquigarrow \left[\begin{array}{rrrrr} 1 & -3 & -1 & 2 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 3 & 1 \end{array} \right] \rightsquigarrow \left[\begin{array}{rrrrr} 1 & -3 & -1 & 2 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

It follows that there are 3 pivots, so X has rank 3 and hence nullity 1. Since the eigenspace for the eigenvalue 0 is N(X - 0I) = N(X), this shows that the 0-eigenspace is 1-dimensional.

(b) (3 pts) What is det(X)?

Solution. Since X has positive nullity, it is not invertible, so det(X) = 0. In general, we have:

 $det(X) = 0 \iff 0$ is an eigenvalue of $X \iff N(X) \neq 0$

. . .

4. (10 pts) Is the matrix

$$A := \left[\begin{array}{rrrr} 1 & 0 & 2 \\ -1 & 3 & 1 \\ 1 & 0 & 2 \end{array} \right]$$

diagonalizable? If so, find a diagonal matrix D and an invertible matrix Q such that $Q^{-1}AQ = D$.

Solution. Since A has two identical rows, clearly $\operatorname{rank}(A) \leq 2$, so $\operatorname{nullity}(A) \geq 1$, so 0 is an eigenvalue of A. However to check for diagonalizability, we need to understand its other eigenvalues. Its characteristic polynomial can be computed by cofactor expansion along the first row:

$$\chi_A(t) = \det \begin{bmatrix} 1-t & 0 & 2\\ -1 & 3-t & 1\\ 1 & 0 & 2-t \end{bmatrix} = (1-t)\det \begin{bmatrix} 3-t & 1\\ 0 & 2-t \end{bmatrix} + 2\det \begin{bmatrix} -1 & 3-t\\ 1 & 0 \end{bmatrix}$$
$$= (1-t)(3-t)(2-t) - 2(3-t) = (t^2 - 3t + 2)(3-t) - 2(3-t) = (t^2 - 3t)(3-t) = -t(t-3)^2$$

It follows that the eigenvalues of A are 0, 3 with multiplicities 1 and 2 respectively. To check for diagonalizability, it suffices to show that the 3-eigenspace E_3 is 2-dimensional. For this, we need to compute

$$N(A-3I) = N\left(\begin{bmatrix} -2 & 0 & 2\\ -1 & 0 & 1\\ 1 & 0 & -1 \end{bmatrix} \right) = \operatorname{Span}\left\{ \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} \right\}$$

It follows that E_3 is 2-dimensional, with basis (1,0,1), (0,1,0), so A is diagonalizable. To compute Q, we must find a basis for each eigenspace. We already did this for E_3 . For E_0 , we have N(A-0I) = N(A). This can be computed by row-reduction. Performing a sequence of elementary row operations, we get

$$A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 3 & 1 \\ 1 & 0 & 2 \end{bmatrix} \rightsquigarrow Z_1 A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 3 \\ 0 & 0 & 0 \end{bmatrix} \rightsquigarrow Z_2 Z_1 A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Where Z_1, Z_2 are each a product of elementary matrices. Clearly

$$N(Z_2 Z_1 A) = \operatorname{Span} \left\{ \begin{bmatrix} -2\\ -1\\ 1 \end{bmatrix} \right\}$$

But since $N(A) = N(Z_2Z_1A)$, it follows that (-2, -1, 1) is a basis for $E_0 = N(A)$. This can also be verified directly by checking that $A \cdot (-2, -1, 1) = \vec{0}$. Thus, we find that

$$\beta = \left\{ \begin{bmatrix} -2\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} \right\}$$

is an eigenbasis for A. Thus we can take Q to be any matrix which sends the standard basis to the eigenbasis (in whatever order). If we send $e_i \mapsto \beta_i$, then we should take Q to be

$$Q = \begin{bmatrix} -2 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \quad \text{in which case} \quad Q^{-1}AQ = D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

5. Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be given by:

T(x, y, z, w) = (x + y + 2z - w, x + 2y + 3z - w, -x + 3y + 2z + w, 3y + 2z + 2w)

(a) (5 pts) Let $W := \langle e_1 \rangle_T$ be the *T*-invariant subspace generated by e_1 . Show that dim W = 3. Hint: It may help to write down the matrix $[T]_{\text{std}}$.

Solution. The matrix for T is:

$$[T] = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 1 & 2 & 3 & -1 \\ -1 & 3 & 2 & 1 \\ 0 & 3 & 2 & 2 \end{bmatrix}, \text{ and } e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, Te_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}, T^2e_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, T^3e_1 = \begin{bmatrix} -1 \\ -1 \\ 1 \\ 2 \end{bmatrix}$$

It's easy to see that the first three vectors are linearly independent, whereas $T^3e_1 = 2T^2e_1 - Te_1$. Thus $W = \langle e_1 \rangle_T$ is 3-dimensional.

(b) (4 pts) Find the matrix of T_W with respect to the basis $\{e_1, Te_1, T^2e_1\}$ of W.

Solution. Let $\beta = \{e_1, Te_1, T^2e_1\}$. By Theorem 5.21 in the book, we have

$$[T_W]_{\beta} = \begin{bmatrix} 0 & 0 & 0\\ 1 & 0 & -1\\ 0 & 1 & 2 \end{bmatrix}$$

(c) (4 pts) Find the characteristic polynomial of T_W .

Solution. By Theorem 5.21 in the book, the characteristic polynomial of T_W is $\chi_{T_W}(t) = (-1)^3(t - 2t^2 + t^3) = -t(t^2 - 2t + 1) = -t(t - 1)^2$.

(d) (5 pts) Is the characteristic polynomial of T split (over \mathbb{R})? Why?

Solution. Yes, because $\chi_{T_W}(t)$ must divide $\chi_T(t)$. This means that $\chi_T(t) = \chi_{T_W}(t)f(t) = -t(t-1)^2 f(t)$ for some polynomial f(t). Since χ_T has degree 4 and χ_{T_W} has degree 3, f(t) is degree 1, so $\chi_T(t)$ is split.

(e) (5 pts) Is T_W diagonalizable? Is T diagonalizable? Why?

Solution. The eigenvalues of T_W are 0,1. The 1-eigenspace E_1 of T_W has the same dim. as

$$N\left([T_W]_{\beta} - I_3\right) = N\left(\left[\begin{array}{rrrr} -1 & 0 & 0\\ 1 & -1 & -1\\ 0 & 1 & 1\end{array}\right]\right)$$

which clearly has dimension 1. Thus the 1-eigenspace of E_1 has dimension 1 which is less than the multiplicity of the eigenvalue 1. It follows that T_W is not diagonalizable.

We claim that this implies that T is not diagonalizable. Suppose for the sake of a contradiction that T is diagonalizable. Then V has an eigenbasis, so every $w \in W$ can be written as $a_1v_{w,1} + \dots a_rv_{w,r}$, where the $v'_{w,i}$ are eigenvectors of T with distinct eigenvalues (if there are multiple eigenvectors for the same eigenvalue involved in the linear combination, you can treat their sum as a single eigenvector). By §5.4 Exercise 23, this implies that $v_{w,i}$ lies in W for every $w \in W$ and every i. Thus, W is spanned by eigenvectors, so a maximal linear independent subset is an eigenbasis. This shows that T_W would be diagonalizable, which we already found to be false. 6. (10 points) Suppose T is a linear operator on a 4-dimensional vector space V with $\det(T) = 0$. Suppose $W \subset V$ is a 3-dimensional T-invariant subspace such that T_W is diagonalizable and $\det(T_W) \neq 0$. Prove that T is diagonalizable.

Proof. Since det(T) = 0, 0 is an eigenvalue of T, so t divides $\chi_T(t)$. Since det $(T_W) \neq 0$, 0 is not an eigenvalue of T_W , so t does not divide $\chi_{T_W}(t)$. Since $\chi_{T_W}(t)$ has degree 3 and divides $\chi_T(t)$, this means that t can divide $\chi_T(t)$ at most once, so it must divide $\chi_T(t)$ exactly once. In fact we must have

$$\chi_T(t) = -t \cdot \chi_{T_W}(t)$$

Since T_W is diagonalizable, for each root λ of $\chi_{T_W}(t)$, the λ -eigenspace of T_W has dimension equal to the multiplicity of λ as a root of χ_{T_W} . Since 0 is not a root of χ_{T_W} , the multiplicity of λ as a root of χ_{T_W} is the same as its multiplicity as a root of χ_T . Since the λ -eigenspace for T_W is contained in the λ -eigenspace for T (and is already the maximum possible, equal to the multiplicity), it follows that every eigenspace has dimension equal to the multiplicity, so T is diagonalizable.

- 7. Every complex number can be represented uniquely as a sum a + bi, where $a, b \in \mathbb{R}$. One can check that \mathbb{C} is a vector space over \mathbb{R} with basis $\beta = \{1, i\}$. If $z = a + bi \in \mathbb{C}$, write $m_z : \mathbb{C} \to \mathbb{C}$ for the "multiplication map" $m_z(w) = zw$.
 - (a) (2 pts) Show that $m_z : \mathbb{C} \to \mathbb{C}$ is a linear map of \mathbb{R} -vector spaces.

Proof. For additivity:

$$m_z(w+w') = z(w+w') = zw + zw' = m_z(w) + m_z(w')$$

Here we used the distributivity axiom "(F5)" of fields (see page 1). For scalar-multiplicativity:

$$m_z(aw) = zaw = azw = am_z(w)$$

Here we used the commutativity axiom "(F1)".

(b) (4 pts) Find the matrix $[m_z]_\beta$ in terms of a and b.

Solution. We know $m_z(\beta_1) = m_z(1) = z = a + bi$, and $m_z(\beta_2) = m_z(i) = iz = ai + bi^2 = -b + ai$. Thus, we have

$$[m_z]_\beta = \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right]$$

(c) (3 pts) Compute the eigenvalues of $[m_z]_\beta$ viewed as a matrix in $M_2(\mathbb{C})$.

Solution. We have $\chi_{[m_z]_\beta}(t) = (a-t)^2 + b^2 = t^2 - at^2 + a^2 + b^2$. By the quadratic formula, its roots are a + bi, a - bi, which are the eigenvalues of $[m_z]_\beta$.

(d) (3 pts) Find the matrix $[m_i]_{\beta}$, where $i \in \mathbb{C}$ is the imaginary unit. Describe how m_i acts geometrically on the complex plane.

Solution. From the formula in part (b), we have $[m_i]_{\beta} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. It acts on \mathbb{C} by rotating everything counterclockwise around the origin by 90 degrees.