
MATH 350 Linear Algebra
Exam 1 Review Notes

Instructor: Will Chen

October 6, 2022

Here is a non-comprehensive overview of what we have covered. You should make sure you are familiar with
these topics. Unless otherwise stated, you should be able to recite all definitions. You should be able to prove
every theorem we’ve covered. As an exercise, when reading each theorem below, try to remember how it was
proved. You should be able to answer all of the questions I pose below, and give justifications/proofs when
relevant.
Caution: There are probably typos. If you think you’ve found one, please lmk ASAP! If you find a typo/mistake
that could potentially cause mathematical confusion, you will receive a bonus point on the exam.

1 Vector spaces, subspaces, and quotient spaces
Definition 1 (Vector space, abridged). A vector space over a field F is a set V together with two operations
+ : V × V → V and · : F × V → V which satisfies the properties VS1-VS8 (see §1.2 in the book).

An element of a vector space is called a vector. We sometimes leave out the field F , and simply say “let V be
a vector space”. In this case it should be understood that V is a vector space over some field F . If we write
“Let V,W be vector spaces”, then it should be understood that they are vector spaces over the same field. You
should know the definition of a field, but you do not need to memorize it for this exam.

Definition 2 (Fields). A field F is a set with two operations + : F × F → F and · : F × F → F , such that the
following hold for all a, b, c ∈ F :

(F1) a+ b = b+ a and a · b = b · a

(F2) (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c)

(F3) There exist distinct elements “0” and “1” in F such that

0 + a = a and 1 · a = a

(F4) For each a ∈ F and nonzero b ∈ F , there exist elements c, d ∈ F such that

a+ c = 0 and b · d = 1

Here, c is called the negative of a, denoted “−a”, and d is called the multiplicative inverse of b, denoted
“b−1” or “1/b”.

(F5) a · (b+ c) = a · b+ a · c

Definition 3 (Subspace). A subspace of a vector space V is a subset W ⊂ V satisfying:

(a) 0 ∈W

(b) For any x, y ∈W , x+ y ∈W .

(c) For any x ∈W,a ∈ F , ax ∈W .
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Recall that A ⊂ B means A is a subset of B. This does not rule out the case A = B. If we want to say that A
is a proper subset of B, we will write A ( B.

In class I mistakenly noted that the last two conditions in the definition imply the first. They do not! For
example, the empty subset {} ⊂ V satisfies the last two conditions, but does not satisfy the first. All three
conditions are required!

As the course progresses you should be collecting a list of examples to refer to. For example, we have discussed
Fn (where F is a field), spaces of functions (all functions, linear functions, continuous functions...etc), spaces of
polynomials “Pn(F )” and “P (F )”, spaces of m× n matrices...

Have an understanding of basic properties of subspaces of a vector space V .

• How many 0-dimensional subspaces are there?

• If dimV = n, how many n-dimensional subspaces are there?

• What are the 1-dimensional subspaces in Fn?

• Is the intersection of 2 subspaces a subspace?

• Is the intersection of arbitrarily many subspaces a subspace?

• If W1,W2 ⊂ V are subspaces, what is W1 +W2? What does W1 ⊕W2 mean? Are they subspaces?

• What are other ways of constructing subspaces?

You should be able to answer the questions above and give justifications when relevant.

Recall the definition of quotient spaces (also called coset spaces)

Definition 4. Let V be a vector space and W ⊂ V a subspace. If v ∈ V , then

v +W := {v + w | w ∈W}

is called the coset of W containing v. The quotient space V/W is defined to be the set

V/W := {v +W | v ∈ V }

equipped with the operations of addition and scalar multiplication:

(v +W ) + (v′ +W ) = (v + v′) +W a(v +W ) = (av) +W for all v, v′ ∈ V, a ∈ F

We showed in the homeworks that these operations are well defined and make V/W into a vector space.

• If v, v′ ∈ V , when is v +W = v′ +W? If v 6= v′, must v +W 6= v′ +W?

• If v +W 6= v′ +W , what is (v +W ) ∩ (v′ +W )?

• If (v +W ) ∩ (v′ +W ) is nonempty, must v +W = v′ +W?

2 Linear combination, span and linear independence
Definition 5 (Linear combination). If V is a vector space and S ⊂ V a subset, then a linear combination of
vectors in S is a vector of the form

a1s1 + a2s2 + · · ·+ ansn

for some collection of scalars ai ∈ F and si ∈ S.

Definition 6 (Span). If V is a vector space and S ⊂ V a subset, then Span(S) is the set of all linear combinations
of vectors in S. We say that S spans V (or S generates V , or S is a spanning set for V ) if Span(S) = V .
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Note that S doesn’t have to be finite!

• What is the relationship between S, Span(S), V ?

• What is Span(V )?

The following alternate characterization of span is often useful:

Theorem 7. If V is a vector space and S ⊂ V a subset, then Span(S) is the intersection of all subspaces
containing S.

The slogan here is that “Span(S) is the smallest subspace containing S”. Here, by “slogan” I mean a phrase
which is not precise, but is easy to remember and conveys the right intuition.

(a) What is not precise about the statement “Span(S) is the smallest subspace containing S”?

The concepts of span and linear independence are “dual” to each other. This is a philosophy to keep in mind.
Whenever you see a theorem about one, think about what the corresponding statement would be for the other.
Here are some examples:

Theorem 8 (Existence vs uniqueness). Let S be a subset of a vector space V . Then

(a) S spans V if and only if every v ∈ V is a linear combination of vectors in S.

(b) S is linearly independent if and only if any v ∈ V which is a linear combination of vectors in S is a linear
combination of vectors in S in a unique way.

The moral here is that span is essentially about “existence”, whereas linear independence is about “uniqueness”.

Theorem 9 (Permanence under subset vs superset). Let S be a subset of a vector space V . Then

(a) If S spans V , and S′ ⊃ S, then S′ also spans V ..

(b) If S is linearly independent and S′ ⊂ S, then S′ is also linearly independent.

The slogan is: “supersets of spanning sets are also spanning”, and “subsets of linearly independent sets are also
linearly independent”.

Theorem 10 (Linear independence in terms of span). Let S be a subset of a vector space V , then S is linearly
independent if and only if no element s ∈ S is in the span of S − {s}.

Here, the “dual” statement to the above can be considered to be itself.

3 Bases and dimension
The notions of basis and dimension go hand in hand.

Definition 11 (Basis). A basis of a vector space V is a subset S ⊂ V that is linearly independent and spans V .

The plural of basis is “bases”. Know the replacement theorem:

Theorem 12 (Replacement theorem, Theorem 1.10 in the book). Let V be a vector space that is generated by
a set G of size n. Let L be a linearly independent subset of V of size m. Then m ≤ n, and there exists a subset
H of G containing exactly n−m vectors such that L ∪H generates V .

It follows from the replacement theorem that

Theorem 13 (All bases have the same size). Let V be a vector space with a finite spanning set. Then V has a
finite basis, and any two bases for V have the same size.

You should know how to prove this using the replacement theorem. Because of the theorem, the following
definition makes sense:
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Definition 14 (Dimension). Let V be a vector space. If V has a finite spanning set, then the dimension of V
is defined to be the size of any basis. If V doesn’t have a finite spanning set, then its dimension is infinite.

You should know the two alternate characterizations of a basis:

Theorem 15. Let V be a vector space.

(a) A subset S ⊂ V is a basis if and only if it is a minimal spanning set. In other words, S is a basis if and
only if S spans V and any strict subset S′ ( S does not span V .

(b) A subset S ⊂ V is a basis if and only if it is a maximal linearly independent set. In other words, S is
linearly independent, and any strict superset S′ ) S is not linearly independent.

Slogan: A basis is a minimal spanning set. It is also a maximal linearly independent set.

If V is finite dimensional, then we have the following numerical criterion for a set to be a basis:

Theorem 16. Let V be a vector space of dimension n. Then

(a) A subset S ⊂ V is a basis if and only if S is linearly independent and |S| = n.

(b) A subset S ⊂ V is a basis if and only if S spans V and |S| = n.

Some questions:

• If V is an n-dimensional vector space. What are the possible sizes of linearly independent sets?

• If V is an n-dimensional vector space. What are the possible sizes of spanning sets?

• If W ⊂ V is a subspace, what is the relation between dimW and dimV ?

• If S ⊂ V is linearly independent, does there exist a basis for V that contains S? (I.e., can every linearly
independent set be extended to a basis?)

• If S ⊂ V is a basis, and W ⊂ V a subset, must there exist a subset S′ ⊂ S such that S′ is a basis for W?

• If S ⊂ V spans V , must there exist S′ ⊂ S such that S′ is a basis for V ?

• If S ⊂ V is linearly independent, is it a basis for a subspace of V ?

• If S ⊂ V spans V , is it a basis for a subspace of V ?

• If Fp denotes a finite field with p elements and V is an n-dimensional vector space over Fp, how many
vectors are in V ?

You should know the following theorem (i.e., know that it is true), but you do not need to know the proof (the
proof basically involves the axiom of choice).

Theorem 17. Every vector space has a maximal linearly independent set.

• Does every vector space have a basis?

4 Linear transformations
Definition 18. A linear transformation is a function between vector spaces f : V →W such that

(a) For any v, v′ ∈ V , f(v + v′) = f(v) + f(v′), and

(b) For any v ∈ V , a ∈ F , f(av) = af(v).
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Sometimes for short we will simply say that f : V →W is linear. You should know that these properties imply
that

f(a1v1 + a2v2 + · · ·+ anvn) = a1f(v1) + a2f(v2) + · · ·+ anf(vn)

for any a1, . . . , an ∈ F and v1, . . . , vn ∈ F . You should know how to prove this from the definition using
induction.

As the course progresses, you should keep in mind a collection of examples of linear transformations. For
example, differentiation, integration, rotation in R2, projection, reflection... There is also the zero linear trans-
formation, and the identity linear transformation. Moreover, you can build linear transformations by adding
linear transformations or multiplying by scalars. In other words,

Theorem 19. Let V,W be vector spaces. The set of all linear transformations V → W is denoted L(V,W ).
Then L(V,W ) is a vector space with the operations of addition and scalar multiplication.

Definition 20. Let f : V →W be a linear transformation. The image of f , denoted im(f) and the kernel of f ,
denoted ker(f) are:

im(f) := {f(v) | v ∈ V } = {w ∈W | w = f(v) for some v ∈ V }
ker(f) := {v ∈ V | f(v) = 0}

The image is also sometimes called the range. The kernel is sometimes also called the nullspace.

Theorem 21. Let f : V → W be a linear transformation. Then im(f) is a subspace of W , and ker(f) is a
subspace of V .

Theorem 22 (Spans and linear transformations). Let f : V → W be a linear transformation. If S ⊂ V spans
V , then f(S) := {f(s) | s ∈ S} spans im(f).

Definition 23. The rank and nullity of f are defined as:

rank(f) := dim im(f)

nullity(f) := dim ker(f)

Sometimes this is infinite.

When the domain V is finite dimensional, rank and nullity are finite and satisfy the

Theorem 24 (Dimension theorem, Theorem 2.3 in the book). Let f : V → W be linear. If V is finite
dimensional, then

rank(f) + nullity(f) = dim(V )

• What happens if V is infinite dimensional? If V is infinite dimensional, could rank(f) and nullity(f) both
be finite?

For linear transformations, we have the following useful characterizations of 1-1 and onto:

Theorem 25. Let f : V →W be linear. Then

(a) f is 1-1 if and only if ker(f) = 0

(b) f is onto if and only if rank(f) = dimW .

A synonym for 1-1 is “injective”. A synonym for onto is “surjective”.

Theorem 26. Let f : V →W be linear.

(a) If f is injective, then for any linearly independent set S ⊂ V , f(S) is also linearly independent. (Slogan:
“f injective implies that f preserves linear independence”)
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(b) If f is surjective, then for any spanning set S ⊂ V , f(S) also spans W . (Slogan: “f surjective implies that
f preserves spanning sets”)

More food for thought:

• Let W ⊂ V be a subspace. Consider the map p : V → V/W defined by sending v 7→ v + W . Is p linear?
What is ker(p)? What is rank(p)? Is p surjective? injective?

The following theorem is crucially important for understanding the relation between matrices and linear trans-
formations:

Theorem 27 (Theorem 2.6 in the book). Let V,W be vector spaces. Let v1, . . . , vn be a basis for V . Let
w1, . . . , wn be arbitrary elements of W . Then there exists exactly one linear transformation f : V → W such
that T (vi) = wi for each i.

In the theorem, the fact that there is at least one such f is due to {v1, . . . , vn} being linearly independent. The
fact that there is at most one such f is due to {v1, . . . , vn} being a spanning set for V . Since {v1, . . . , vn} is a
basis, it is both linearly independent and spanning, so there is a unique such f .

5 Matrices and linear transformations
Let V,W be vector spaces, and β = (v1, . . . , vn) an ordered basis for V . Recall that if A is a set and n ≥ 1
an integer, then An denotes the n-fold cartesian product, whose elements are n-tuples (a1, . . . , an) with each
ai ∈ A. If |A| = m, then |An| = mn.

Consider the map

Φβ : L(V,W ) −→ Wn

f 7→ (f(v1), f(v2), . . . , f(vn))

Theorem 27 implies:

Theorem 28. The map Φβ is a bijection (i.e., it is both 1-1 and onto).

If γ = (w1, . . . , wm) is an ordered basis for W , then any w ∈ W can be written as a linear combination of
the wi’s in a unique way. I.e, for any w ∈ W , there exist uniquely determined coefficients a1, . . . , am such that
w = a1w1+a2w2+ · · ·+amwm. This tuple of coefficients is often viewed as an m×1 matrix, called the coordinate
vector of w relative to γ, denoted

[w]γ :=


a1
a2
...
am


Let us write ([w]γ)i for the ith entry. In our notation above, we have ([w]γ)i = ai. Consider the map

Ψγ : Wn −→ Mm×n(F )

(x1, . . . , xn) 7→ Aij

where Aij := ([xj ]γ)i. Then

Theorem 29. The map Ψγ is a bijection.

Composing Φβ and Ψγ , we have
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Theorem 30 (The matrix associated to a linear transformation). Let V,W be vector spaces. Let β = (v1, . . . , vn)
be an ordered basis for V , γ = (w1, . . . , wm) an ordered basis for W . Then the map

Ψγ ◦ Φβ : L(V,W ) −→Mm×n(F )

is a bijective linear transformation. If f ∈ L(V,W ), then the matrix of f relative to the bases β, γ is denoted

[f ]γβ := Ψγ(Φβ(f))

You should understand this map. Note that Ψγ ◦ Φβ is also linear. You should be able to compute the matrix
of a linear transformation (relative to bases of the domain and codomain). Given a matrix A, you should also
be able to find a linear transformation whose matrix is A (relative to suitable bases).

Caution: Given a linear transformation f : V → W , it does not make sense to speak of the matrix of f .
To talk about the matrix of f , you need to choose a basis for V and a basis for W . Any two bases will do,
and relative to any two choses bases, you can compute a matrix for f . The matrix will usually depend on the
chosen bases. Similarly, given a matrix A, to define a linear transformation whose matrix is A, one needs to
choose vector spaces V,W and appropriate bases for them. If A is m× n, then a convenient choice is to choose
V = Fn,W = Fm, and to choose the bases to be the standard bases.

• Can you give an example that shows that the matrix of a linear transformation depends on the choice of
bases β, γ?

If f : V →W and g : W → Z are linear maps between vector spaces, then the composition g ◦ f is the map

g ◦ f : V −→ Z

v 7→ g(f(v))

Note that you can only compose if the codomain of the first map matches the domain of the second.

Theorem 31. With notation as above, g ◦ f is linear.

Some basic properties of composition are as follows. All are easily proven from the definitions.

Theorem 32 (See Theorem 2.10 in the book for a more precise, but also more restrictive statement). Let f, g, h
be linear transformations (between possibly lots of different vector spaces). Let id denote the identity linear
transformation (of some vector space). Whenever composition makes sense, we have

(a) f ◦ (g + h) = f ◦ g + f ◦ h and (g + h) ◦ f = g ◦ f + h ◦ f

(b) f ◦ (g ◦ h) = (f ◦ g) ◦ h

(c) f ◦ id = id ◦f = f

(d) a(f ◦ g) = (af) ◦ g = f ◦ (ag) for any scalar a ∈ F .

The fact that Ψγ◦Φβ is linear tells us that addition and scalar multiplication of linear transformations corresponds
to addition and scalar multiplication of matrices. The next natural question is: what does composition of linear
transformations correspond to in terms of matrices? In other words, if α, β, γ are bases for V,W,Z respectively,
and f : V →W , g : W → Z are linear, then what is the matrix [g ◦ f ]γα in terms of f, g? The answer is:

Theorem 33 (Composition corresponds to matrix multiplication, Theorem 2.11 in the book). Let V,W,Z be
finite dimensional vector spaces and let f : V → W and g : W → Z be linear transformations. Let α, β, γ be
bases of V,W,Z respectively. Then

[g ◦ f ]γα = [g]γβ [f ]βα

where the right hand side is the product of matrices.
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Note that [g]γβ , [f ]βα will generally have different sizes. Indeed, if dimV = n,dimW = m,dimZ = r, then [g]γβ
will be r ×m, [f ]βα will be m× n, and [g ◦ f ]γβ will be r × n. You should know how to multiply matrices.

We did not discuss this final theorem in class, but the proof is quite short. It is a good exercise to try to prove
it.

Theorem 34 (Theorem 2.14 in the book). Let V,W be finite dimensional vector spaces having ordered bases β
and γ respectively. Let f : V →W be linear. Then for each v ∈ V , we have

[f(v)]γ = [f ]γβ [v]β .

Here, recall that [f(v)]γ , [v]β are the coordinate vectors of f(v) and v with respect to γ and β respectively.

Food for thought:

• Let A be an m×n matrix and B an n×p matrix. Let (AB)∗j denote the jth column of AB. Does (AB)∗j
depend on every entry of the matrix B? Which entries does it depend on?

• Let A be an m × n matrix and B an n × p matrix. Let B∗j denote the jth column of B. Can you write
B∗j as BC for some matrix C? (Hint: By considering sizes of the matrices, C would have to be a p × 1
matrix)
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