\qquad

EXAM 1

This is an closed book, closed notes exam. No calculators are allowed.

Useful shorthand: Feel free to write:

- "LI" instead of "linearly independent"
- "LD" instead of "linearly dependent"
- "LT" instead of "linear transformation"
- "v.s." instead of "vector space"
- "f.d.", or "fin. dim." instead of "finite dimensional". You can also write " $\operatorname{dim} V<\infty$ " for " V is finite dimensional".

If you use this, make sure you write very clearly.
Synonyms: Remember that null space is a synonym for kernel; range is a synonym for image; nullity is a synonym for the dimension of the kernel; rank is a synonym for the dimension of the image; injective is a synonym for one-to-one; surjective is a synonym for onto; bijective is a synonym for one-to-one and onto.

Reminders: If A, B are sets, then $A \times B:=\{(a, b) \mid a \in A, b \in B\}$. We have $|A \times B|=|A| \times|B|$. If A is a set and $n \geq 1$ is an integer, then $A^{n}:=\underbrace{A \times A \times \cdots \times A}_{n \text { times }}$.
If you are asked to prove and if and only if (" $\Longleftrightarrow "$), then you must prove both directions. If you are asked to prove that two sets A, B are equal, then you must prove $A \subset B$ and $B \subset A$.

Every vector space is implicitly over some field F. Recall the definition of a field:
Definition 0.0.1 (Fields). A field F is a set with two operations $+: F \times F \rightarrow F$ and $\cdot: F \times F \rightarrow F$, such that the following hold for all $a, b, c \in F$:
(F1) $a+b=b+a$ and $a \cdot b=b \cdot a$
(F2) $(a+b)+c=a+(b+c)$ and $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
(F3) There exist distinct elements " 0 " and " 1 " in F such that

$$
0+a=a \quad \text { and } \quad 1 \cdot a=a
$$

(F4) For each $a \in F$ and nonzero $b \in F$, there exist elements $c, d \in F$ such that

$$
a+c=0 \quad \text { and } \quad b \cdot d=1
$$

(F5) $a \cdot(b+c)=a \cdot b+a \cdot c$
In F4, c is called the negative of a, denoted " $-a$ ", and d is called the multiplicative inverse of b, denoted " b^{-1} " or " $1 / b$ ".

1. (30 points, 3 points each) Label the following statements (T)rue or (F)alse. Include a short justification of your answer.
(a) Every vector space has a unique basis.

Solution. False. Every vector space has a basis, but the basis is rarely unique.
(b) If $W_{1}, W_{2} \subset V$ are two n-dimensional subspaces such that $W_{1} \neq W_{2}$. Then $\operatorname{dim}\left(W_{1} \cap W_{2}\right)<n$.
(c) If $W_{1}, W_{2} \subset V$ are subspaces, then $W_{1} \cup W_{2}$ is a subspace.
(d) If $S \subset V$ is a subset, then some subset of S is a basis for $\operatorname{Span}(S)$.
(e) If $W \subset V$ is a subspace, then $\operatorname{Span}(W)=W$.
(f) Let S be an infinite subset of a vector space V. Then every element of $\operatorname{Span}(S)$ is a linear combination of finitely many vectors in S.
(g) Let V be a finite dimensional vector space. Let $S \subset V$ be a spanning set and $L \subset V$ be linearly independent. Then $|L| \leq|S|$.
(h) If $f: V \rightarrow W$ is a linear transformation and V is finite-dimensional, then

$$
\operatorname{dim} \operatorname{ker}(f)+\operatorname{dim} \operatorname{im}(f)=\operatorname{dim} V
$$

(i) If $f: V \rightarrow W$ is a linear transformation and $\operatorname{dim} W<\operatorname{dim} V<\infty$, then f cannot be 1-1.
(j) If W_{1}, W_{2} are subspaces of a vector space V, then $W_{1} \subset W_{2}$ if and only if $\operatorname{dim} W_{1} \leq \operatorname{dim} W_{2}$.
2. (15 points)
(a) (4p) Let V be a vector space, and let $v \in V$ be a nonzero vector. Prove that for any $a \in F$, $a v=0 \Longleftrightarrow a=0$
(b) (4p) Let V be a vector space, and let $v \in V$ be a nonzero vector. Prove that for any $a, b \in F$, $a v=b v \Longleftrightarrow a=b$
(c) (7 p) Let \mathbb{F}_{3} be a field with 3 elements. How many 1-dimensional subspaces are there in $\mathbb{F}_{3} \times \mathbb{F}_{3}$? Justify your answer.
3. (20 points) Let $f: V \rightarrow W$ be a linear transformation. In the following two proofs, do not invoke any theorems about linear transformations. You may of course use the definition of a linear transformation, and the extension that $f\left(\sum_{i=1}^{n} a_{i} x_{i}\right)=\sum_{i=1}^{n} a_{i} f\left(x_{i}\right)$ for any $a_{1}, \ldots, a_{n} \in F$ and $x_{1}, \ldots, x_{n} \in V$.
(a) (10p) Suppose f is one-to-one, and $S \subset V$ is a subset. Prove that S is linearly independent if and only if $f(S)$ is linearly independent. (Recall: $f(S):=\{f(s) \mid s \in S\}$)
(b) (10p) Suppose $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and that f is both one-to-one and onto. Prove that $f(\beta)$ is a basis for W.
4. (25 points) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
f(x, y, z)=(x+2 y+3 z, 5 x+5 z,-x+y)
$$

Let $\beta=((1,0,0),(0,1,0),(0,0,1))$ be the standard ordered basis of \mathbb{R}^{3}. Let γ be the ordered basis $((1,0,0),(0,1,2),(1,1,1))$.
(a) (5p) Find the matrix of f relative to the standard ordered basis β. This matrix is denoted $[f]_{\beta}^{\beta}$ (or sometimes just $[f]_{\beta}$ for short).
(b) (2p) Compute the matrix product $[f]_{\beta}^{\beta}\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$, where $x, y, z \in \mathbb{R}$. Your answer should be a matrix whose entries are in terms of x, y, z.
(c) (5p) Find the second column of the matrix $[f]_{\beta}^{\gamma}$.
(d) (5p) Find a basis for $\operatorname{im}(f)$. Explain why it is a basis.
(e) (5p) Find a basis for $\operatorname{ker}(f)$. Explain why it is a basis.
(f) (3p) Is f one-to-one? Is f onto? Why?
5. (10 points) Let V, W be nonzero finite dimensional vector spaces. Recall that $\mathcal{L}(V, W)$ denotes the space of linear transformations $V \rightarrow W$. Let $v \in V$ be a nonzero vector. Let $\mathcal{L}_{v} \subset \mathcal{L}(V, W)$ be the subset

$$
\mathcal{L}_{v}:=\{f \in \mathcal{L}(V, W) \mid f(v)=0\}
$$

(a) (3p) Show that $\mathcal{L}_{v} \subset \mathcal{L}(V, W)$ is a subspace.
(b) (7p) Show that $\operatorname{dim} \mathcal{L}_{v}=\operatorname{dim} \mathcal{L}(V, W)-\operatorname{dim}(W)$. (Hint: Consider the map $e_{v}: \mathcal{L}(V, W) \rightarrow W$ sending $f \mapsto f(v)$. Show that e_{v} is linear. What is its image? kernel?)

