EXAM 1 SOLUTIONS

This is an closed book, closed notes exam. No calculators are allowed.

Useful shorthand: Feel free to write:

- "LI" instead of "linearly independent"
- "LD" instead of "linearly dependent"
- "LT" instead of "linear transformation"
- "v.s." instead of "vector space"
- "f.d.", or "fin. dim." instead of "finite dimensional". You can also write " $\operatorname{dim} V<\infty$ " for " V is finite dimensional".

If you use this, make sure you write very clearly.
Synonyms: Remember that null space is a synonym for kernel; range is a synonym for image; nullity is a synonym for the dimension of the kernel; rank is a synonym for the dimension of the image; injective is a synonym for one-to-one; surjective is a synonym for onto; bijective is a synonym for one-to-one and onto.

Reminders: If A, B are sets, then $A \times B:=\{(a, b) \mid a \in A, b \in B\}$. We have $|A \times B|=|A| \times|B|$. If A is a set and $n \geq 1$ is an integer, then $A^{n}:=\underbrace{A \times A \times \cdots \times A}_{n \text { times }}$.
If you are asked to prove and if and only if (" \Longleftrightarrow "), then you must prove both directions. If you are asked to prove that two sets A, B are equal, then you must prove $A \subset B$ and $B \subset A$.
Every vector space is implicitly over some field F. Recall the definition of a field:
Definition 0.0.1 (Fields). A field F is a set with two operations $+: F \times F \rightarrow F$ and $\cdot: F \times F \rightarrow F$, such that the following hold for all $a, b, c \in F$:
(F1) $a+b=b+a$ and $a \cdot b=b \cdot a$
(F2) $(a+b)+c=a+(b+c)$ and $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
(F3) There exist distinct elements " 0 " and " 1 " in F such that

$$
0+a=a \quad \text { and } \quad 1 \cdot a=a
$$

(F4) For each $a \in F$ and nonzero $b \in F$, there exist elements $c, d \in F$ such that

$$
a+c=0 \quad \text { and } \quad b \cdot d=1
$$

(F5) $a \cdot(b+c)=a \cdot b+a \cdot c$
In F4, c is called the negative of a, denoted " $-a$ ", and d is called the multiplicative inverse of b, denoted " $b^{-1 "}$ or " $1 / b$ ".

1. (30 points, 3 points each) Label the following statements (T)rue or (F)alse. Include a short justification of your answer.
(a) Every vector space has a unique basis.

Solution. False. Every vector space has a basis, but the basis is rarely unique.
(b) If $W_{1}, W_{2} \subset V$ are two n-dimensional subspaces such that $W_{1} \neq W_{2}$. Then $\operatorname{dim}\left(W_{1} \cap W_{2}\right)<n$.

Solution. True. Write $W_{12}:=W_{1} \cap W_{2}$. Clearly $W_{12} \subset W_{1}$, so $\operatorname{dim}\left(W_{12}\right) \leq n$. If $\operatorname{dim}\left(W_{12}\right)=$ n, then W_{12} is a full dimensional subspace of W_{1}, so $W_{12}=W_{1}$. Applying the same logic, if $\operatorname{dim}\left(W_{12}\right)=n$, then W_{12} is a full dimensional subspace of W_{2}, so $W_{12}=W_{2}$. This means $W_{1}=W_{12}=W_{2}$, contradicting the hypothesis that $W_{1} \neq W_{2}$.
(c) If $W_{1}, W_{2} \subset V$ are subspaces, then $W_{1} \cup W_{2}$ is a subspace.

Solution. False. Take the union of the two axes in \mathbb{R}^{2}. Clearly it is not a subspace, since for example $e_{1}+e_{2}$ does not lie in either axis.
(d) If $S \subset V$ is a subset, then some subset of S is a basis for $\operatorname{Span}(S)$.

Solution. True, this is theorem 1.9 in the book.
(e) If $W \subset V$ is a subspace, then $\operatorname{Span}(W)=W$.

Solution. True. Use the alternate characterization of $\operatorname{Span}(S)$ as the intersection of all subspaces containing S.
(f) Let S be an infinite subset of a vector space V. Then every element of $\operatorname{Span}(S)$ is a linear combination of finitely many vectors in S.

Solution. True. By the definition of linear combination, a single linear combination can only involve finitely many vectors.
(g) Let V be a finite dimensional vector space. Let $S \subset V$ be a spanning set and $L \subset V$ be linearly independent. Then $|L| \leq|S|$.

Solution. True, this is the replacement theorem.
(h) If $f: V \rightarrow W$ is a linear transformation and V is finite-dimensional, then

$$
\operatorname{dim} \operatorname{ker}(f)+\operatorname{dimim}(f)=\operatorname{dim} V
$$

Solution. True, this is the dimension theorem.
(i) If $f: V \rightarrow W$ is a linear transformation and $\operatorname{dim} W<\operatorname{dim} V<\infty$, then f cannot be 1-1.

Solution. True. By the dimension theorem, $\operatorname{dim} \operatorname{ker}(f)+\operatorname{dim} \operatorname{im}(f)=\operatorname{dim} V$. Since $\operatorname{im}(f) \subset$ $W, \operatorname{dim} \operatorname{im}(f) \leq \operatorname{dim} W<V$. It follows that $\operatorname{dim} \operatorname{ker}(f)>0, f$ has a nonzero kernel, so f is not 1-1 (see, for example, Theorem 2.4 in the book).
(j) If W_{1}, W_{2} are subspaces of a vector space V, then $W_{1} \subset W_{2}$ if and only if $\operatorname{dim} W_{1} \leq \operatorname{dim} W_{2}$. Solution. False. Take $V=\mathbb{R}^{2}$, and take W_{1}, W_{2} to be the two axes respectively. Then their dimensions are equal, but neither contains the other.
2. (15 points)
(a) (4p) Let V be a vector space, and let $v \in V$ be a nonzero vector. Prove that for any $a \in F$, $a v=0 \Longleftrightarrow a=0$

Proof. The direction \Leftarrow is clear, since $0 v=0$. Now suppose $a v=0$. Then if $a \neq 0$, there exists $a^{-1} \in F$ such that $a^{-1} a=1$, in which case we would get $v=1 v=a^{-1} a v=a^{-1} 0=0$. Since v was assumed nonzero this means $a=0$.
(b) (4p) Let V be a vector space, and let $v \in V$ be a nonzero vector. Prove that for any $a, b \in F$, $a v=b v \Longleftrightarrow a=b$

Proof. If $a v=b v$, then $a v-b v=(a-b) v=0$, but by (a) this implies that $a-b=0$, so $a=b$.
(c) $(7 \mathrm{p})$ Let \mathbb{F}_{3} be a field with 3 elements. How many 1-dimensional subspaces are there in $\mathbb{F}_{3} \times \mathbb{F}_{3}$? Justify your answer.

Solution. First, there are $3^{2}=9$ elements in $\mathbb{F}_{3} \times \mathbb{F}_{3}$. Any 1-dimensional subspace is generated by any nonzero vector in it. A 1 -dimensional subspace over \mathbb{F}_{3} has 3 elements, one of which is the zero vector, so every 1 -dimensional subspace over \mathbb{F}_{3} has two possible bases. There are $9-1=8$ nonzero vectors in $\mathbb{F}_{3} \times \mathbb{F}_{3}$, these elements can be labelled by the 1 -dimensional subspaces that they generate. Since every nonzero vector generates a unique 1-dimensional subspace, and every 1 -dimensional subspace has exactly two generators, there must be 4 such subspaces.
3. (20 points) Let $f: V \rightarrow W$ be a linear transformation. In the following two proofs, do not invoke any theorems about linear transformations. You may of course use the definition of a linear transformation, and the extension that $f\left(\sum_{i=1}^{n} a_{i} x_{i}\right)=\sum_{i=1}^{n} a_{i} f\left(x_{i}\right)$ for any $a_{1}, \ldots, a_{n} \in F$ and $x_{1}, \ldots, x_{n} \in V$.
(a) (10p) Suppose f is one-to-one, and $S \subset V$ is a subset. Prove that S is linearly independent if and only if $f(S)$ is linearly independent. (Recall: $f(S):=\{f(s) \mid s \in S\}$)

Proof. We first prove \Rightarrow. Suppose S is LI, and suppose $a_{1}, \ldots, a_{n} \in F, s_{1}, \ldots, s_{n} \in S$ satisfy $a_{1} f\left(s_{1}\right)+\cdots+a_{n} f\left(s_{n}\right)=0$. By linearlity, this means $f\left(a_{1} s_{1}+\cdots+a_{n} s_{n}\right)=0$. Since $f(0)=0$ and f is $1-1$, anything that gets mapped to 0 must be zero, so $a_{1} s_{1}+\cdots+a_{n} s_{n}=0$. Since S is LI, the a_{i} 's are all 0 . Since the s_{i} 's were arbitrary, this shows that $f(S)$ is LI.

Next we prove \Leftarrow. Suppose $f(S)$ is LI, and let $a_{1}, \ldots, a_{n} \in F, s_{1}, \ldots, s_{n} \in S$ satisfy $a_{1} s_{1}+\cdots+$ $a_{n} s_{n}=0$. Then $f\left(a_{1} s_{1}+\cdots+a_{n} s_{n}\right)=a_{1} f\left(s_{1}\right)+\cdots+a_{n} f\left(s_{n}\right)=0$. Since $f(S)$ is LI, this implies the a_{i} 's are all 0 . Since the s_{i} 's were arbitrary, this shows that S is LI.
(b) (10p) Suppose $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and that f is both one-to-one and onto. Prove that $f(\beta)$ is a basis for W.

Proof. Since β is a basis, it is LI, so by (a), $f(\beta)$ is LI. It remains to show that $f(\beta)$ spans W. Let $w \in W$. We must show that w is in the span of $f(\beta)$. Since f is onto, $w=f(v)$ for some $v \in V$. Since β is a basis, we can write $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$, but this shows that

$$
w=f(v)=f\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=\sum_{i} a_{i} f\left(v_{i}\right)
$$

This shows that $w \in \operatorname{Span} f(\beta)$.
4. (25 points) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
f(x, y, z)=(x+2 y+3 z, 5 x+5 z,-x+y)
$$

Let $\beta=((1,0,0),(0,1,0),(0,0,1))$ be the standard ordered basis of \mathbb{R}^{3}. Let γ be the ordered basis $((1,0,0),(0,1,2),(1,1,1))$.
(a) (5p) Find the matrix of f relative to the standard ordered basis β. This matrix is denoted $[f]_{\beta}^{\beta}$ (or sometimes just $[f]_{\beta}$ for short).

Solution. This just amounts to unraveling the definition of $[f]_{\beta}^{\beta}$. In this case, since we're working relative to the standard basis, this is just the matrix whose j th column is the column vector $f\left(e_{j}\right)$. Thus the matrix is

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
5 & 0 & 5 \\
-1 & 1 & 0
\end{array}\right]
$$

(b) (2p) Compute the matrix product $[f]_{\beta}^{\beta}\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$, where $x, y, z \in \mathbb{R}$. Your answer should be a matrix whose entries are in terms of x, y, z.
Solution. The product is just

$$
\left[\begin{array}{c}
x+2 y+3 z \\
5 x+5 z \\
-x+y
\end{array}\right]
$$

(c) (5p) Find the second column of the matrix $[f]_{\beta}^{\gamma}$.

Solution. The second column is the coordinate vector of $f\left(e_{2}\right)$ relative to the basis γ. From the definition of f, we have $f\left(e_{2}\right)=f(0,1,0)=(2,0,1)$. We wish to express this as a linear combination of the vectors in γ. In other words, we want to find coefficients a_{1}, a_{2}, a_{3} such that

$$
a_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+a_{2}\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]+a_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

This corresponds to the matrix equation:

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

or equivalently, the system of linear equations

$$
\begin{aligned}
a_{1}+a_{3} & =2 \\
a_{2}+a_{3} & =0 \\
2 a_{2}+a_{3} & =1
\end{aligned}
$$

Using techniques from Math 250 (i.e., solving the linear system) we find that the second column is $\left(a_{1}, a_{2}, a_{3}\right)=(3,1,-1)$.
(d) (5p) Find a basis for $\operatorname{im}(f)$. Explain why it is a basis.

Solution. The image of f is the span of $f(\beta)$, which is $v_{1}:=(1,5,-1), v_{2}:=(2,0,1), v_{3}:=$ $(3,5,0)$. Note that these are just the columns of the matrix $[f]_{\beta}$. Since a basis is just a minimal spanning set, there is a subset of $\left\{v_{1}, v_{2}, v_{3}\right\}$ which is a basis. We just have to find this subset. Since $\operatorname{im}(f) \subset \mathbb{R}^{3}$, it is at most 3 dimensional. It's obvious that v_{1}, v_{2}, v_{3} are not all scalar multiples of each other, so they span something which is at least 2-dimensional. In other words, $\operatorname{im}(f)=2$ or 3 , and $\operatorname{im}(f)=3$ if and only if $\left\{v_{1}, v_{2}, v_{3}\right\}$ are LI. To check this, consider the equation

$$
a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0
$$

Writing it out as in part (c), we find that this is equivalent to the matrix equation

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
5 & 0 & 5 \\
-1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

or equivalently the linear system

$$
\begin{aligned}
a_{1}+2 a_{2}+3 a_{3} & =0 \\
5 a_{1}+5 a_{3} & =0 \\
-a_{1}+a_{2} & =0
\end{aligned}
$$

Solving this, we find that the general solution is $a_{1}=a_{2}=-a_{3}$. Thus, there are nontrivial solutions (e.g., $(1,1,-1)$), so $\left\{v_{1}, v_{2}, v_{3}\right\}$ are not linearly independent. Thus, $\operatorname{rank}(f)=2$, so a basis of $\operatorname{im}(f)$ is given by a size 2 subset of $\left\{v_{1}, v_{2}, v_{3}\right\}$. For example, $\left\{v_{1}, v_{2}\right\}$ give a basis, since it is a linearly independent set of size 2 inside the 2 -dimensional space $\operatorname{im}(f)$.
(e) (5p) Find a basis for $\operatorname{ker}(f)$. Explain why it is a basis.

Solution. From part $(\mathrm{d}), \operatorname{ker}(f)$ is the set $\{(a, a,-a) \mid a \in \mathbb{R}\} \subset \mathbb{R}^{3}$. This is a 1-dimensional space, so any nonzero vector gives a basis. For example, you can take $(1,1,-1)$.
(f) (3p) Is f one-to-one? Is f onto? Why?

Solution. f has a nonzero kernel, so it is not 1-1. Since $\operatorname{dim} \operatorname{im}(f)=2, \operatorname{im}(f)$ cannot be equal to \mathbb{R}^{3}, so f cannot be onto.
5. (10 points) Let V, W be nonzero finite dimensional vector spaces. Recall that $\mathcal{L}(V, W)$ denotes the space of linear transformations $V \rightarrow W$. Let $v \in V$ be a nonzero vector. Let $\mathcal{L}_{v} \subset \mathcal{L}(V, W)$ be the subset

$$
\mathcal{L}_{v}:=\{f \in \mathcal{L}(V, W) \mid f(v)=0\}
$$

(a) (3p) Show that $\mathcal{L}_{v} \subset \mathcal{L}(V, W)$ is a subspace.

Proof. Clearly \mathcal{L}_{v} contains the zero linear transformation. Now, if $f, g \in \mathcal{L}(v)$, then $(f+g)(v)=$ $f(v)+g(v)=0$, so $f+g \in \mathcal{L}(v)$. Similarly if $a \in F$, then $(a f)(v)=a f(v)=a \cdot 0=0$, so $a f \in \mathcal{L}(v)$. This shows that \mathcal{L}_{v} is a subspace.
(b) (7p) Show that $\operatorname{dim} \mathcal{L}_{v}=\operatorname{dim} \mathcal{L}(V, W)-\operatorname{dim}(W)$. (Hint: Consider the map $e_{v}: \mathcal{L}(V, W) \rightarrow W$ sending $f \mapsto f(v)$. Show that e_{v} is linear. What is its image? kernel?)

Proof. Consider the map $e_{v}: \mathcal{L}(V, W) \rightarrow W$. This map is linear since $e_{v}(f+g)=(f+g)(v)=$ $f(v)+g(v)=e_{v}(f)+e_{v}(g)$, and $e_{v}(a f)=(a f)(v)=a f(v)=a e_{v}(f)$. Its kernel is obviously $\mathcal{L}(v)$. We claim that its image is W (i.e., e_{v} is surjective). Indeed, for any $w \in W$, pick a basis v_{1}, \ldots, v_{n} for V. Then there is a linear transformation f that sends each $v_{i} \mapsto w$ (for example, Theorem 2.6 in the book guarantees this). It follows that $e_{v}(f)=f(v)=w$. This shows that $\operatorname{im}\left(e_{v}\right)=W$. By the dimension theorem, we have

$$
\operatorname{dim} \operatorname{ker}\left(e_{v}\right)+\operatorname{dim} \operatorname{im}\left(e_{v}\right)=\operatorname{dim} \mathcal{L}(v)+\operatorname{dim} W=\operatorname{dim} \mathcal{L}(V, W)
$$

as desired.

