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1 Introduction
Many results in invariant theory are described over fields, or sometimes over Z, even though in fact they hold
over all rings. The latter is well known, though often not written down. In this short note we carefully explain
how to promote two such results, which are well known (and explained) over fields, to arbitrary rings R. The
key result is the universal coefficient theorem, which relates base change properties to the vanishing of a certain
Tor group, and the notion of a good filtration, which will imply the vanishing of desired Tor group. We thank
Wilberd van der Kallen for his patience in explaining some of these ideas to us in a mathoverflow post.

Please contact me at oxeimon[at]gmail[dot]com with any questions, comments, or mistakes.

1.1 The problem
Let k be a ring (commutative with 1). For integers d, n ≥ 1, let k[n] denote the polynomial ring on nd2 variables
corresponding to the coordinates of n-many d× d matrices. Thus k[n] represents the functor

Mn,d : Alg
k
−→ Sets

R 7→ Md(R)

where Md(R) denotes the set of d × d matrices with coefficients in the k-algebra R. For A ∈ Md(A), let ck(A)
be the coefficient of T k in the characteristic polynomial det(A − TI). The group scheme GLd = GLd,k acts
on the functor Mn,d, and hence on k[n] by simultaneous conjugation. Clearly for any product Xi1Xi2 · · ·Xir

(ij ∈ {1, . . . , n} and r ≥ 1), the function

ck(Xi1Xi2 · · ·Xir ) ∈ k[n]

is GLd-invariant. We have the following classical theorem of invariant theory

Theorem 1.1.1 (First fundamental theorem for the invariant theory of matrices). For any ring k, k[n]GLd is
generated as a k-algebra by the functions ck(Xi1 · · ·Xir ).

The statement over C is a classical result independently obtained by Sibirski [Sib67] and Procesi [Pro76]. It was
then extended to the cases k = Z and k any algebraically closed field by Donkin [Don92] (also see [DCP17, §15.2]).
Here we describe how to deduce Theorem 1.1.1 from Donkin’s results. By the universal coefficient theorem
[Jan03, I, Proposition 4.18], for any flat algebraic group G over Z, a flat G-module M and any ring k, we have
an exact sequence

0 −→MG ⊗ k −→ (M ⊗ k)Gk −→ TorZ1 (H1(G,M), k) −→ 0 (1)

Thus, the problem of base change is reduced to showing that H1(G,M) is Z-flat. In fact it is possible to show
that this cohomology group vanishes. We will also show a related result:

Theorem 1.1.2 (Base change for strict character varieties). Let G be a split reductive algebraic group over Z.
For an integer n ≥ 1, let Z[Gn] be the coordinate ring of Gn, and let G act on Z[Gn] by simultaneous conjugation.
Then we have

Hi(G,Z[Gn]) = 0 for all i > 0
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In particular, for any ring k, Z[Gn]G ⊗ k = k[Gn]Gk .

This result is particularly important in the theory of character varieties for representations of free groups. The
connection is this - let Fn denote a free group of rank n. Then the functor Hom(Fn, G) is representable by Gn,
and we may consider the GIT quotient Hom(Fn, G)//G ∼= (Gn)//G = SpecZ[Gn]G where G acts by conjugation
on the target of any representation in Hom(Fn, G), or equivalently by simultaneous conjugation on Gn. When
G = GLd, this quotient is called the character variety for degree d representations of Fn. For general G, let us
call this quotient the G-character variety for G-representations of Fn (we consider only conjugation by G, not
GLd). The general theory implies that this is a categorical quotient [Ses77, Remark 8]; Theorem 1.1.2 moreover
shows that the quotient commutes with arbitrary base change in the base ring.

2 First fundamental theorem of invariant theory
HereG = GLd andM = Z[n]. We wish to show thatH1(G,M) is Z-flat, or equivalently that TorZ1 (H1(G,M),Fp) =
0 for all primes p [Har10, §1, Lemma 2.1]. Since Fp is faithfully flat over Fp, it suffices to show

TorZ1 (H1(G,M),Fp) = 0 for all primes p

By universal coefficients (1), it suffices to show that Z[n]GLd ⊗ Fp = Fp[n]
GLd,Fp - equivalently, that the latter is

generated as an Fp-algebra by the functions ck(Xi1 · · ·Xir ). However this follows from Donkin’s main theorem
[Don92, Theorem 1].

3 Base change for G-character varieties
Here we address Theorem 1.1.2. The key idea is that of a good filtration.

3.1 Some notation
Let G be a split reductive algebraic group over a ring k and T a maximal torus.1 Let R be the set of roots, and
R+ ⊂ R a positive system. Let B the negative Borel subgroup, let X(T ) denote the weight lattice of T , and
X+(T ) ⊂ X(T ) the subset which are dominant for G. A subset π ⊂ X+(T ) is saturated if whenever λ ∈ π, then
for any µ ∈ X+(T ) with µ ≤ λ, then also µ ∈ π. We note that X+(T ) is the union of all finite saturated subsets
π.

For a weight λ ∈ X(T ), let kλ denote the representation of B on which T acts via λ. For any G-module M , let
Hi(M) := Ri IndGBM

∼= Hi(G/B,L(M)), where L is the quasi-coherent sheaf on G/B associated toM [Jan03, I,
§5.8-5.12]. For λ ∈ X(T ), let Hi(λ) := Hi(kλ). Let W be the Weyl group of G, and let w0 ∈W be the element
of longest length.

When k is a field, there is a universal highest weight module of weight λ, denoted V (λ) := H0(−w0λ)∗ (also
called the Weyl module) [Jan03, II, §2.13]. Inside V (λ)Q := Ind

GQ
BQ

(−w0λ)∗, there is a Z-lattice, denoted V (λ)Z,
which is GZ-stable, and satisfies V (λ)Z⊗ZK = V (λ)K for any field K [Jan03, II, §8.3]. Accordingly for arbitrary
rings A, define V (λ)A := V (λ)⊗Z A.

We say that a G-module M has a good filtration if there exists an ascending filtration 0 = M0 ⊂M1 ⊂M2 ⊂ · · ·
with M =

⋃
i≥0Mi and each Vi/Vi−1 is isomorphic to some H0(λi) with λi ∈ X+(T ).

3.2 The argument
The following results are key.

Lemma 3.2.1 ([Jan03, II, Lemma B.9]). Suppose k is a principal ideal domain. Let M be a G-module that is
free of finite rank over k. Then the following properties are equivalent:

1In fact any split reductive algebraic group is defined over Z. See the references in [Jan03, II, Introduction to §1].
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(i) M has a good filtration.

(ii) ExtiG(V (λ),M) = 0 for all λ ∈ X+(T ) and all i > 0.

(iii) Ext1G(V (λ),M) = 0 for all λ ∈ X+(T ).

(iv) For each maximal ideal m in k, the Gk/m-module M ⊗ k/m has a good filtration.

Here is the analog of Donkin’s theorem [Don92, Theorem 1]:

Proposition 3.2.2. Let k be a field. For an integer n ≥ 1, let G act on k[Gn] by simultaneous conjugation.
Then k[Gn] has a good filtration.

Proof. First, let k[G]l,r be k[G] with the G×G-module structure given by the left and right regular representa-
tions. Then by [Jan03, II, Proposition 4.20], k[G]l,r has a good filtration with factors H0(λ)⊗H0(−w0λ) where
each dominant weight λ appearing once. Then k[G] with the conjugation action is obtained by restricting the
G×G action on k[G]l,r via the diagonal embedding ∆ : G ↪→ G×G (remember an inverse is required in either
the left or right regular representations). On the other hand tensor products of G-modules with good filtrations
also admit good filtrations [Jan03, II, Proposition 4.21], so each H0(λ)⊗H0(−w0λ) has a good filtration. Thus
we conclude that k[G] has a good filtration as a G-module acting by conjugation (also see [Jan03, II, Remark
4.21]. Since k[Gn] = k[G]⊗n, we find that k[Gn] has a good filtration as desired.

Working over k = Z, sinceG/B is a smooth proper Z-scheme2, when λ = 0, V (0) = H0(Z)∗ = H0(G/B,OG/B)∗ =
Z. Thus, if Z[Gn] has a filtration with each filtered piece finite free and having a good filtration, then by applying
Lemma 3.2.1 to the filtered pieces, we would find that Hi(G,Z[Gn]) = 0 for all i > 0, as desired.

To describe these pieces, we will need the truncated submodules Oπ(Z[G]) := Z[G]∩Oπ(Q[G]), where π ⊂ X+(T )
is a subset [Jan03, II, §A.1, A.24, B.7]. These submodules are free Z-modules, stable under G (acting by
conjugation), and are finite rank if π is finite [Jan03, II, §A.15-16]. In particular, for any list of finite saturated
subsets π1, π2, . . . , πn ⊂ X+(T ),

O(π1, . . . , πn) :=

n⊗
i=1

Oπi
(Z[G]) ⊂ Z[G]⊗n = Z[Gn]

is a finite free G-submodule of Z[G]. We have OX+(T )(Q[G]) = Q[G] [Jan03, II, §A.1], so setting we find
that Z[G] =

⋃
π Oπ(Z[G]) as π ranges over finite saturated subsets of X+(T ), and hence Z[Gn] = Z[G]⊗n =⋃

(π1,...πn)
O(π1, . . . , πn). It remains to show that each O(π1, . . . , πn) admits a good filtration. By Lemma 3.2.1,

it suffices to check this over fields k. Indeed, for a field k, since k[G] has a good filtration by Proposition 3.2.2,
the same is true of Oπ(k[G]) (use [Jan03, II, Lemma A.15] and [Jan03, II, Proposition 4.21]), and hence the
same is true of the tensor product O(π1, . . . , πn)k for any sequence π1, . . . , πn of finite saturated subsets. This
completes the proof.
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