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[8  Appendix - Abstract deformation theory| 29

1 Introduction

The goal of these notes is to provide an account of the equivalence between Katz modular forms over C (e.g.,
sections of the Hodge bundle over certain moduli stacks of elliptic curves with level structures) and classical
modular forms defined as holomorphic functions on the upper half plane H. This result, while essentially
“standard”, does not (to my knowledge) seem to have a self-contained reference in the literature. These notes
are my attempt at providing such a reference, in a way which works for any finite index subgroup of SLy(Z) (not
necessarily congruence!). These notes were written mostly for my own benefit. There may be mistakes.

The main result amounts to a GAGA argument, which leads us to work with proper schemes/stacks. In §1-6,
I try to provide a well-referenced account of the equivalence between Katz and classical modular forms without
shying away from stacks. In §7] I prove a version of the g-expansion principle suitable for the noncongruence
setting, and deduce some arithmetic consequences.

A main reference used in these notes is the stacks project [Stal6|, which being a work in progress, is best
referenced through the use of “tags”. These are sequences of 4 alphanumerics, which can be looked up here:

https://stacks.math.columbia.edu/tag

2 Generalities on Sheaves on Stacks

Let C be a site, and p : X — C a fibered category. We give X’ the topology inherited from C. That is, a family
{z; = x}ics is a covering in X iff its image in C is a covering family. Thus we may speak of sheaves on X (of
sets, groups, rings, or any “algebraic structure” as described in [Stal6| 00YR).

2.1 Morphisms of stacks defining morphisms of topoi

Now let f : X — ) be a morphism of fibered categories over C, each given the topologies inherited from C. Then,
f is a continuous and cocontinuous functor ([Stal6] 06NW), and we have induced maps of topoi:

(fe, f71) : Sh(X) — Sh(Y)
given as follows. If G € Sh()), then the inverse image f~1(G) is a sheaf on X given by

(f7H9)() =G(f(z)) xeX
This formula defines a sheaf because f is continuousﬂ For a sheaf F € Sh(X), the direct image f..F is given by

foF(y) := Jim F(x) for any y € Y
(z,¥)€ v IoPP

where I is the category whose objects are (z,v) with z € X and ¢ : f(z) — y a morphism in ), and a

morphism (z,v¢) — (2/,4’) is a morphism « : x — 2’ such that ¢’ o f(«) = %. This formula defines a sheaf

because f is cocontinuou

Remark 2.1.1. We note that the definitions above seem opposite to what one might expect. For example, if
C = Sch, and X,) are representable by schemes X,Y, given a sheaf G on Y, one expects that f, should be
simple to define (no limits involved), and f~! should be more complicated - for example, the usual formula for
f~1G where G is a sheaf on the small Zariski site Yz, is:

[76W) = lim G(V) G € Sh(Va) (1)
VO f(U)

IThis formula is denoted fP in [Stal6] 00WU, 06NW, and is equal to f° because f is continuous, and hence sends sheaves to
sheaves.
2This is also denoted ,f in [Stal6] 06NW, and is equal to sf because f is cocontinuous - ie, it sends sheaves to sheaves.


https://stacks.math.columbia.edu/tag

as V ranges over opens. The fact that f, is simple when X)) are schemes is actually recovered in the next
section §2.20 The fact that f~! is also simple can be seen as a peculiarity of sheaves on “big sites”. For example,
the reason for the limit in the formula is because given an open immersion U — X (ie, an object of the site
X7zar), the composition U — X — Y is typically not an open immersion (ie, is not in Yz,,), and hence since
G is defined only on Yz,,, to define (f'G)(U — X), one must approximate U — X — Y by objects of Yzar,
hence the limit in . However, if G is actually a sheaf on a big site (Sch/Y"), (with some appropriate topology
7), then U = X — Y is an object of Sch/Y, and hence no approximation is needed - one can simply define
(f'G)(U — X) := G(U — X — Y). The fact that this gives a sheaf follows from the fact that the functor
f:(Sch/X); — (Sch/Y). is continuous, which in turn follows tautologically from the definitions of inherited
topologies and morphisms between fibered categories ([Stal6| Tag 06NW).

2.2 Computing pushforward

Now suppose that moreover X, ) are fibered in groupoids over C, and the morphism f : X — ) is representable.
By definition, this means that for any U € C and morphism U — Y, the fiber product U xy X = (C/U) xy X
is a representable stack, represented by an object of C, which we call u(U), which comes with canonical maps to
U and to X. This association (U — )) — (u(U) — X) can be made functorial, and as a result by the 2-Yoneda
lemma we have a functor X <~ ) which by definition is right adjoint to f (see [Stal6] 06W7 and the ensuing
discussion). In this case, the pushforward f. can be more easily computed as:

fxF(y) = F(uly)) for any y € Y (|Stal6] 06W8, 00XW)

2.3 The structure sheaf

Suppose O is a sheaf of rings on C making (C,O) into a ringed site. For example, if C = (Sch/S)s, then
we can give it the structure of a ringed site by taking the structure sheaf O = Og to be given by the rule
O(U — S) :=T(U,Op) where Oy is the standard structure sheaf on the scheme U, with the obvious restriction
maps. If C = An,, (the category of complex analytic spaces equipped with the etale topology), then its
structure sheaf O is given by the same formula O(U) := I'(U, Oy) for any U € An, where here Oy is the sheaf
of holomorphic functions on U.

The site C can be viewed as the final object in the category of stacks over C, and the structure morphism
p: X — C can be viewed as a morphism to this final object. Thus, as above we may form the pullback p~10O,
and we define the structure sheaf Oy of X to be:

Ox:=p 'O  given by Ox(z) := O(p(x)) (c.f. [Stal6] 06TU)

More precisely, Ox as a functor X — Rings is the composition X 2 C s Rings.

By our definition of inverse image sheaves, if f : X — ) is any morphism of fibered categories over the ringed
site C with structure morphisms p: X — C and g : Y — C, then we have:

pt=(gof) ' =f""og" hence Ox:=p lO=['¢'O= 710y

2.4 Types of modules

Let (S, Os) be a ringed site. In our case we will often want to consider a category fibered in groupoids p: X — C
over the ringed site (C, ©), which is either An or Sch/S with the usual structure sheaf, both equipped with the
etale topology, and will set S = X with the inherited topology, and Os = Oy = p~1O.

For a sheaf F of Os-modules on the site S, and any object s € S, we may restrict F to the localized site S/s
(|Stal6] 00XZ) by the rule

(Flsys)(s" = s) == F(s)
If S = X, then for x € X, let U := p(z). By the 2-Yoneda lemma (|Stal6] 004B), the object 2 defines a morphism
x:U = X, and O, := Oy = 27 10x = (pox)~1O. Moreover, the functor p induces an equivalence of sites
X/x — C/U (|Stal6] OCNO).

We have the following types of modules (c.f. |Stal6] 03DE, 03DL).



e We say that F is free if F is isomorphic to a direct sum €,_; Os. If I is finite of cardinality r, then we
say that F is finite free of rank r.

o We say that F is locally free if for every s € S, there is a covering {s; — s} such that each restriction
Flsss, is a free Og,-module. If they are moreover all finite free, then we say that F is finite locally free.

o We say that F has a global presentation if there is an exact sequence

@Oa@@%]—'—m

jeJ i€l
of O-modules. If I, J are finite, then we say that F has a global finite presentation.

e We say that F is quasi-coherent if for every s € S, there is a covering {s; — s} in S such that each
restriction Fls/,, is an O, -module which has a global presentation.

o We say that F is generated by finitely many global sections if there is an integer » > 0 and a surjection
og" — F.

o We say that F is finite type if for every s € S, there is a covering {s; — s} such that each restriction F|s s,
is an O,,-module generated by finitely many global sections.

e We say that F is coherent if F is of finite type, and for every object s € S and any finite set of sections
o1,...,0n € F(s), the kernel of the map (0;) : ®],0s, — F|s is of finite type on the localized site
(8/s,04).

2.5 Functoriality for modules

Let S be a scheme, and F a quasi-coherent Og-module. Then for any reasonable topology 7, the rule sending
any f:U — S to T'(U, f*F) defines a sheaf of Og-modules on the big site (Sch/S)., denoted F*, and similarly
for the small etale or Zariski sites (|Stal6] 03DU). These sheaves F* are moreover quasicoherent (|Stal6] 03DV),
and the construction F — F* determines an equivalence of categories which is compatible with pullback (|Stal6|
03DX, 03LC. See 03DO for the result that pullback preserves quasicoherence):

2. QCoh(S) — QCoh((Sch/S),, Os)
(Warning: the composition QCoh(S) — Mod((Sch/S),Os) is not necessarily exact! See §2.5.1| for an exam-

ple.)

Now suppose f : X — ) is a morphism of fibered categories over the ringed site (C,0). If G is a sheaf of
Oy-modules, then for any z € X, f~1G(z) := G(f(z)) which is a (f71O0y)(x) = Oy(f(x)) = Ox(x)-module,
and so f71G is naturally an Oxy-module. Normally, between Mod(Ox), Mod(Oy), f. is right adjoint to f*,
which is usually defined as:

G :=f'G®-10, Ox
but since Ox = f~10y, we find that f*G = f~1G, so f* = f~! in our setting. Put another way, the fact that
f~10y = O implies that the pair (f., f~!) defines a flat morphism of ringed topoi (|Stal6] 04JB)

(fe, ™)+ (Sh(X), Ox) — (Sh(D), Oy)
In particular, f~! = f*: Mod(0Oy) — Mod(Ox) is exact (|Stal6] 04JC).

2.5.1 The case of representable stacks: exactness of f* = f~! on big sites

The results of |2.5{implies that if f : X — Y is any morphism of schemes, then f* = f~1 : Mod((Sch/Y),, Oy) —
Mod((Sch/X),,Oxy) is exact for any reasonable topology 7. Of course, the analogous statement in the case of
small Zariski sites is far from true (f* is only exact if f is flat). Let us see exactly what the difference is:

Consider the map f : SpecFy — SpecZ. Let F be the quasicoherent sheaf Z on SpecZ. It’s clear that the
map 2 : F — F is injective, but f*2 : f*F — f*F is zero. On the other hand, by the recipe given above,



F determines a quasicoherent sheaf F® on the big étale site (Sch/Z)¢:, and the map 2% : F* — F° is still an
injective map of quasicoherent modules since F +— F% is an equivalence. Applying f*, we have a morphism
f¥(24) : f*F* — f*Fe. Since f* = f~!, and taking global sections of f*F over SpecFy, we have

f*F*(SpecFy) = F*(SpecFy EN SpecZ) = I'(Spec Fa, f*Z) =Ty

and on this, f*(2%) is again given by multiplication by 2, and hence is the zero map, so f*(2%) is not injective!
At first this seems to contradict the stated exactness of f* = f~! on O-modules and the injectivity of 2°.

The fix is to note that the functor F — F® only gives an equivalence QCoh(SpecZ) — QCoh((Sch/Z)¢t, O).
However, the inclusion QCoh((Sch/Z)s:, O) — Mod((Sch/Z)¢t, O) is certainly not an equivalence, and more-
over it is not even left exactﬂ! In particular, the map 2% : F* — JF“ is only injective in the category
QCoh((Sch/Z)¢:, ©) in the sense that it’s quasicoherent kernel is trivial, but not injective in Mod((Sch/Z)¢:, O).
Indeed, SpecFas — SpecZ is an object of (Sch/Z)s, and hence the same computation as above shows that
20 : F¢ — F° has a nontrivial O-module kerneld

This example illustrates that while f* = f~! is exact on big sites, producing injective maps is “more difficult”.
The fact that f : X — Y (and more generally T — X EN Y) is an object of (Sch/Y) implies that an
injective morphism of O-modules on (Sch/Y)s; must by definition be injective on all classical (scheme-theoretic)
pullbacks. This exactly excludes the morphisms which fail to remain injective after applying a classical pullback,
which is “how” f* = f~! manages to be exact on O-modules!

Note that the equivalence -* : QCoh(X) — QCoh((Sch/X)., Ox) and its compatibility with pullback implies

that f* = f~1 is not generally left exact as a functor QCoh((Sch/Y )¢, Oy) — QCoh((Sch/X)¢, Ox)! It is
exact precisely when the usual pullback f*: QCoh(Y) — QCoh(X) is exact, ie, when f is flat.

2.6 Analytic spaces and stacks

We follow the definitions of [Hall4]. Let An be the category of (complex) analytic spaces. Given an analytic
space X, let | X| denote its underlying topological space. A morphism of analytic spaces is etale if it is an isomor-
phism locally in the analytic topology. Covering families for the (big) etale site An,, (sorry for the notational
inconsistency compared to S¢; and (Sch/S)¢;) are given by jointly surjective families of etale morphisms.

An analytic space X gives rise to a stack over An,, via its functor of points. We will not distinguish between
an analytic space and its associated stack. A stack ) over An,, is called an analytic stack, and is representable
if it is isomorphic to an analytic space. A 1-morphism U — V of analytic stacks is representable if for any
analytic space X and any l-morphism X — V), the 2-fiber product U xy X is representable. If P is a property
of morphisms in An that is stable under base change (e.g. etale, surjective, separated, flat, proper), then a
representable 1-morphism of analytic stacks &/ — V has P if for any analytic space X and any l-morphism
X — V, the morphism of analytic spaces U x, X — X has P.

3 Deligne-Mumford stacks

From now on, let C be the site An., or a full subcategory of (Sch/S)¢ (with the same notion of coverings) for
some fixed noetherian base scheme S. A Deligne-Mumford stack over C is a stack in groupoids p : X — C such
that:

(a) The diagonal A : X — X x X is representable (by schemes).

(b) There is an object U € C with a surjective etale morphism f: U — Xﬂ

3More precisely (see |Stal6] 06VE), the inclusion functor is fully faithful, right exact, compatible with colimits and tensor
products...

“4this is the same as the kernel viewed sheaves of abelian groups, since the forgetful functor Mod((Sch/Z)¢;, O) — Ab((Sch/Z)¢;)
is exact |Stal6] 03DA. In particular such kernels can be readily detected on sections.

5Note that this implies that A must be unramified [Stal6| 06MB



In addition, to fit with the assumptions of [Hall4] (which we use as our reference for GAGA), we will assume
that:

(¢) A: X — X x X is quasicompact and separated.
(d) We may find U as above such that the composition U — X — S is locally of finite type.

Note that for objects U,V € C and a morphism z : U — X and y : V — X, we have a cartesian diagram

UxguyV ——— &

| lm

UxVv -9 xxx
which shows that any morphism from an analytic space to a stack with representable diagonal is itself repre-
sentable. In particular, (b) makes sense in light of (a). A Deligne-Mumford stack over An,, is called an analytic
DM stack. A DM stack over (Sch/S)s; is called an algebraic DM stack.

3.1 Quasicoherent sheaves on Deligne Mumford stacks

As usual, when speaking of sheaves on stacks, a sheaf on X will refer to a sheaf on the site X equipped with the
topology inherited from C.

Our references to stacky GAGA consider only quasicoherent sheaves on the small etale sites of Deligne Mumford
stacks (see below §3.2), whereas the discussion above only treats quasicoherent sheaves on big sites. However,
for Deligne-Mumford stacks, because such stacks have a presentation describable in the small étale site, the
resulting notions of quasicoherent sheaves are equivalent. That is to say, on a DM stack, a quasicoherent sheaf
on the small site uniquely extends to a quasicoherent sheaf on the big site. The precise details/references are as
follows.

Let p : X — C be a Deligne-Mumford stack, where C is either An,, or (Sch/S)s: for some fixed base scheme S
with the natural structure sheaf. Let U — X be a etale cover with U € C. Then, R := U xx U € C admits two
maps s,t: R = U, as well as amap c: R X,y R — R given by

c:Rx,pyt R=UxxUxxUZ3R

The data (U, R, s,t,¢) is a groupoid in C (|Stal6] 0230), and the natural map U — X induces an equivalence of
categories [U/R] = X (|Stal6| 04T5).

By definition, a quasi-coherent module on (U, R, s,t,¢) is a pair (F, «), where F is a quasi-coherent Opy-module
(ie, a module on Uz, ), and « is an Op-module map

a:t"F — s F
satisfying a certain cocycle condition which is difficult to draw (see [Stal6] 03LI).

In the above, it may seem more correct to require that F be a quasicoherent module on Ug; instead of Uya,,.
However, it turns out the categories of quasicoherent sheaves on these sites are equivalent (|Stal6] O3DR)E|

Proposition 3.1.1. The category of quasicoherent modules on X is equivalent to the category of quasicoherent
modules on (U, R, s,t,¢).

Proof. Roughly speaking, given a quasicoherent module on X 2 [U/R], one can restrict it to obtain a quasi-
coherent module on U, and one can show that this satisfies the appropriate compatibilities for it to define a
quasicoherent module on (U, R, s,t,c). For the other direction, a key point is that given a category fibered in
groupoids over a ringed site, the stackification map induces an equivalence on the categories of sheaves, sheaves
of modules, and quasicoherent sheaves of modules (|Stal6] 06WP). Thus, given a quasicoherent module (F, )
on (U, R, s,t,c), it suffices to construct a quasicoherent module on the prestack quotient [U/,R]. To do this, for
any morphism ¢ : T — U, one simply defines F(T,t) := I'(T,t*F). See |Stal6] 06WT for details. O

61t seems that one needs to be somewhat careful when speaking about properties of quasicoherent sheaves viewed on Upg; vs

Ugzar- The only cases one needs to be careful are for the properties of locally free and coherent (though finite locally free is fine),
and for coherent, there is no difference as long as U is locally noetherian, which will always be the case in the following.




3.2 Sheaves on the small site X,

Given a DM stack p: X — C, let Xy denote the small etale site of /\’ﬂ That is, its objects are etale morphisms
U — X with U € C, and coverings are jointly surjective families of etale morphisms. Its structure sheaf, which
we will also denote by Oy is just the restriction of the usual structure sheaf to Xg. Our references for GAGA
([Hall4], |[Toe99|) will consider quasicoherent sheaves on (Xg, Ox). By (also see [Stal6] 06WK), any such
quasicoherent sheaf extends uniquely to a quasicoherent sheaf on X', and it’s clear that the notions of finite
locally free and coherent of §2.4) agree whether we are speaking about sheaves on X or X;.

We will let QCoh(X) (resp. Coh(X)) be the categories of quasicoherent (resp. coherent) Oy modules on X.
Let Mod(X;:) denote the category of Ox-modules on Xg;.

3.3 Global sections of sheaves

If X is DM stack and F is a quasicoherent sheaf on X, a priori we may only evaluate F on objects of the category
X or Xg, which may not have a final object. Nonetheless, we may define its global sections as

F(X):=T(X,F):= H(X,F) := Hompgh(x) (e, F) = Hommod(x,,) (Ox, F) (c.f. [Stal6] 071D)

where e is the final object in the category of presheaves of sets on Xﬂ By default, this set of global sections only
has the structure of an abelian group, though if C (with structure sheaf O) has a final object ¢, then O(t) is a
ring, and H°(X, F) has the structure of an O(t)-module. By definition, a global section of F is thus the data of
a section of F(x) for every x € X, compatible with all morphisms of the category X. If X is representable by a
scheme/analytic space X then X is a final object of X', X, and so we may take global sections by evaluating F
on X.

Example 3.3.1. While this definition obviously agrees with the classical definition for global sections of sheaves
on schemes, the stacky nature of X gives the definition an added subtlety. For example, a homomorphism
o : Oy — F is a natural transformation of functors, and hence such homomorphisms must be compatible with
the morphisms in the category X. In particular, for 7' € C and an automorphism a :  — z in the fiber category
X(T)ﬂ we have automorphisms Oy (a) : Ox(x) — Ox(x) and F(a) : F(x) — F(z) (in the “opposite direction”).
By the definition of the structure sheaf, the fact that a lies over idy means that Ox(a) = idp (4, but F(a) may
still be nontrivial. Thus, the functoriality of ¢ says that the following diagram must commute:
o(x)
Ox(x) —= F(x)
Oﬂa):idowml lf(a)

Ox(z) 22 F(a)
This says exactly that the image of 1 € Ox(z) under o(a) should be invariant under F(Autyry(x)). This
condition corresponds precisely to the transformation law satisfied by modular forms (c.f. Definition
below).

Alternatively, using the equivalence of categories [3.1.1} we may also take global sections via:
0 s"t7 e
F(x) = HOX, F) =Fa (FU) = FU xx V) = Ker (F(U) = FU =2 V))

4 GAGA

Let Sch™¥FT /C denote the category of schemes locally of finite type over C.

Tthis notation agrees with [Hall4|, but disagrees with [Stal6] 06TP.
8Specifically, e is the constant presheaf with value the singleton set
9being a morphism in the fiber category here means that a lies over idy in C



4.1 GAGA for schemes

This is quoted from SGA |Gro71| Exposé XII, Geometrie algebrique et geometrie analytique.

Let RS denote the category of spaces ringed in C-algebras. If X is a scheme locally of finite type over C, we
may associate to X the functor:
An — Sets Z ~ Homgs_(Z, X)

By [Gro71]| §XII.1.1, this functor is representable by an analytic space, denoted X?*, which is equipped with a
canonical morphism ¢ : X*" — X in RS inducing an isomorphism of functors An — Sets:

¢. : Homgg (¥, X*") — Hompgs_ (%, X) fpof

In particular, the map ¢ induces a bijection |X**| — X (C), and the induced maps on local rings are local
homomorphisms which induce isomorphisms on their completions. By the definition of X*"* — X, for any
morphism X — Y of locally finite type C-schemes, the map X*" — X — Y factors uniquely through Y?" and
hence the association X — X?" defines a functor called analytification

an:Sch™/C - An X~ X

To any locally finite type scheme X/C with analytification ¢ : X** — X and Ox-module F', we may form the
pullback ¢*F, which is Oxan-module. The association

F s F™ = o*F

gives rise to a functor Mod(Ox) — Mod(Oxan) commuting with all inductive limits and takes coherent modules
to coherent modules (|Gro71] §XII.1.3). Moreover, this functor is exact and faithful (hence conservative).

If X is a proper C-scheme, then analytification gives an equivalence of categories Coh(X) = Coh(X?") (c.f.
[Gro71] §XI1.4.4).

4.2 GAGA for stacks
This is mostly quoted from [Hall4] §2 and Toen |Toe99| §5.

There seem to be two notions of analytification for stacks. Let X be an algebraic Deligne-Mumford stack over
(SchLOFT/C)ét, with an etale covering given by U — X with a U scheme. Let R := U x x U. The analytification
functor an : Sch™*T /C — An is continuous (for the etale topology), and we let

«: Ang, — (Sch™ " /C),,
denote the corresponding morphism of (big etale) sites. In the rest of this section we may omit the subscript ét,
as we will only consider the etale topology on An and Sch™!T /C.

We may define the analytification X'*" to be:
o X" .= [R* = U?"] (as in Hall [Hall4] §2) or

o X" = o*X (as in Toen [Toe99] Lemme 5.5)

This is denoted a~1X in [Stal6] Tag 04WJ. Presumably this agrees with Toen’s reference pointing to a
definition of Giraud |Gir71] §II.3.2.

We will assume that the two definitions agree (I have not checked it myself: presumably we can show that they
agree on schemes, and that they “preserve” presentations).

As with schemes, the association X' ~~» X?" is functorial, and from Hall’s definition it is clear that we have a
bijection of sets of points |X2*| = |X'(C)].

An algebraic DM stack X is proper if and only if X" is (|[Hall4] §2). For any proper algebraic DM stack ), the
functor induced by analytification:
Hom(X,)Y) — Hom(X*", y*")



is an equivalence of categories ([Hall4] Theorem C).

Let Coh™® — Sch™ ™ /C denote the stack of (algebraic) coherent sheaves. Its objects consist of pairs (U, F)
where U € Sch™¥T /C and F is a coherent sheaf on U. The structure morphism to SchfT /C just forgets
the sheaf F. For two objects (U, F),(V,G), a morphism from (U, F) to (V,G) is a pair (f,b) where f: U =V
is a morphism and b : f*G — F is an isomorphism in Coh(U). We have an analogous definition of the stack
Coh™ — An of coherent analytic sheaves. Clearly both @alg, Coh®" are stacks in groupoids.

We may form the pushforward stack o, Coh™, which is a stack in groupoids over (Sch " /C)4. By definition
(c.f. |Stal6] Tag 04WA) the objects of a,, Coh™ are pairs (U, F) where U € Sch™*?/C and F € Coh(U™).
The morphisms of ., Coh™ are pairs (a,b) : (U, F) — (V,G) where a : U — V is a morphism in Sch™**/C
and b : (a®)*G — F is an isomorphism in Coh(U?").

We may also form a pullback stack o* @alg, which is a stack in groupoids over An,. The definition is somewhat
complicated (c.f. [Stal6] Tag 04WA), but the key point is that a* is left adjoint to o, and this gives a canonical
equivalence of categories

MorStacks/ﬁ(a*%M%%aH) = MorStacks/C(%alga a*%an) (Cf lStalGI Tag 04WK)

where Stacks/C refers to the (2,1)-category of stacks in groupoids over (Sch™**/C)s,.
For X € (Sch™"™/C), the analytification functor Coh(X) — Coh(X?") defines a morphism in Stacks,/C

Coh™® — o,Coh™ defined by (U, F) — (U, F*")
and hence by adjointness, we obtain a morphism in Stacks/An
& : a*Coh®® s Coh™
For an algebraic DM stack X over SchFT /C, we have equivalences of categories

Coh(X) = Homgaks/c(X, Coh™®)
@(Xan) = HomStacks/M('Xanv@an)

which essentially come from the definition of a coherent sheaf on a stack. Thus, recalling that X*" := o* X', we
now have a functor

Coh(X) = Homggacks/c(X,Coh™®) — Hom(X*" a*Coh®®) — Hom(X*,Coh®) = Coh(x")
F > o*F — (1 o o* F)

This defines the analytification functor for coherent sheaves on Deligne-Mumford stacks:
an : Coh(X) — Coh(X?")

If X is proper, then this functor is an equivalence of categories (c.f. [Toe99| §5.10, [Hall4] §2.4).

5 Moduli of elliptic curves

5.1 A universal family

Let M(1) denote the moduli stack of elliptic curves over C, and M(1)*" the analytic moduli stack of elliptic
curves - this is a stack over An. Let £ denote the universal (stacky) elliptic curve over M(1), and £*" the
universal curve over M(1)**. Given T € An and a morphism f : T — M(1)**, let f*£>" denote the elliptic
curve over T corresponding to f. In this section we will construct an explicit family of elliptic curves [E over the
upper half plane A such that & = [E/ SLy(Z)].

For any 7 € H, let A, :=Z+7Z C C, and E, := C/A,. Over H, we have a “universal family” of elliptic curves
E := (H x C)/Z?, where Z? acts freely by the rule

(a,b) - (1,2) := (1,2 + aT + b) a,beZ, Te€H, ze€C



Thus, E is a family of elliptic curves over H. In this section we will show that this family carries a canonical
“framing” which makes it into a universal family of framed elliptic curves.

The natural action of SLy(Z) on H lifts to an action on E defined as follows:

)= (g s) = [ek] €S @

Thus, for every v € SLy(Z), we have a pullback diagram

]

H—"sH

i,

It is a crucial fact, which is straightforward to check, that for any 7,7’ € H, we have a bijection
{v € SLs(Z) : v7 = 7'} = Isom(E,,E,/) vy Alg, : (3)

and moreover, if v = [‘Z Z], then 4|g_ : E; — E, induces the multiplication-by-j(v,7) := ﬁ map on tangent
spaces at the origin. In particular, Aut(E,) = Stabgy,, (z)(7), and the map j(*,7) gives an isomorphism

1

§(%,7) s Stabs,z)(T)  —=  pn = {7 ke {0,1,2,...,n— 1}}
~ ct+d

v=[%4]

j(’% T) =

For any fixed 7,7/, the set Isom(E,,[E/) is a torsor under Aut(E,) 2 u,, and the set of j(v,7) for v sending
7+ 7' is also a torsor under fi,. In particular, the values j(v,7) are distinct as  ranges over Stabgr,, z)(7).

A framing (c.f. [HaiO8| Definition 1.13) on an elliptic curve E is an ordered basis v, vy of Hi(E,Z) such that
the intersection number vy - v = 1. By Ehresmann’s fibration theorem, any family of elliptic curves E/T is a
locally trivial C'*® fiber bundle. For a contractible open U C T and s,t € U, the inclusions of Ey, F; into Ey are
homotopy equivalences, and hence induce isomorphisms

H\(E,,Z) = Hy(Ey, Z) = Hy(Ey, Z) (4)
A locally constant framing on E/T is a family
{v1(t),v2(t) € Hi(Ey,Z) = v1(t) -v2(t) =1, t € T}
such that for every contractible open U C T and s,t € U, (vi(s),v2(s)) maps to (vi(t),v2(t)) under the isomor-

phism . A family of elliptic curves E/T is framed if it is equipped with a locally constant framing.

The family E is equipped with a universal locally constant framing, where over 7 € H, E, is framed by the
homology classes represented by the “straight” path going from 0 ~» 1 € C/A,, and 0 ~ 7 € C/A,. A framed
family of elliptic curves (E/T,v1,v2) determines a period mapping

f'Ul(t) W

Cpr:T —H t—
fvz(t)wt

where for every t we choose some nonzero differential w; on E;. It’s clear from the formula that the period
map ® g/ does not depend on this choice of w;. This period map is holomorphic ([Hai08] Proposition 2.3) and
moreover induces a unique isomorphism E; 2 FE preserving the framings. In particular, H is a fine moduli space
for framed families of elliptic curves (|HaiO8|, Proposition 2.4).

Proposition 5.1.1. Let M(1)®" denote the analytic moduli stack of elliptic curves over Any,. The family E/H
determines a map H — M(1)*" which factors, via the canonical covering map prgr,(zy : H — [H/SL2(Z)],
through an equivalence of stacks [H/SLa(Z)] = M(1)".
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Proof. Let [H/, SLa(Z)] be the category fibered in groupoids over An defined as followﬂ

e Given an object T' € An, the fiber category [}/, SL2(Z)](T) is the category whose objects are morphisms
T — M, and given a,b : T — H, Morpy, su,z)(1)(a,b) = {7y € SL2(Z) : yoa = b}. We will write such a
morphism as a triple (v, a,b), or as v : a — b.

e The objects of [H/, SL2(Z)] are morphisms T' — H, and its image in An is 7.

e Given two objects a : T — H and a’ : T" — H, the set of morphisms Mor(y, sr,(z)(a,a’) is the disjoint
union
| ] Mory/, sLo(z)) (1) (a, f*a’)
feMoran(T,T")
where f*a’ := ao f. The structure morphism [H/, SL2(Z)] — An is given by sending a : T — H to T,
and sending a morphism in the above disjoint union to the corresponding f.

Then, by definition, there is a morphism [/, SL2(Z)] — [/ SL2(Z)] identifying the latter as the stackification
of the former. We will construct a functor

F i [M/,SLa(Z)] - M(1)™

as follows. To any object a : T — H in [H/, SLa(Z)]|(T), let F(a) := a*E, viewed as an elliptic curve over 7.
For two objects a,b: T — H in [H/, SLa(Z)], if v : @ — b in the fiber category over T, then b = -y o a, and hence
4 determines a unique isomorphism a*E — b*E making the natural diagram commute. We define F(y : a — b)
to be this isomorphism. This in turn determines the functor F' on all morphisms in [/, SLa(Z)].

It’s clear from definition that the composition

Y (1], SLa(2)] - M(1)™

is the morphism determined by the family E/#H. Thus, it remains to show that the functor F' : [H/, SL2(Z)] —
M(1)®* is both a monomorphism and an epimorphism. If this is the case, then by [Noo05| §3.5, it would follow
that F induces an equivalence on stackifications [H/ SLy(Z)] > M(1)2".

By definition ([Noo05| §3.1), to show that F' is a monomorphism, one must show that the restriction of F' to
fiber categories [H/, SLo2(Z)](T) is fully faithful. Faithfulness is clear from the construction. To show fullness,
we wish to show that for any a,b : T — H and any isomorphism o : a*E = b*E, there is a v € SLy(Z) such
that v o a = b and the following diagram commutes:

b'E —— E

({ ﬂ (5)

E —— E

We can reduce to the case where T is connected. The relative tangent bundle at the zero section of E/H is
visibly trivial, and we may identify it with H x C. Being pullbacks of E, the relative tangent bundles at the
zero sections of a*E, b*E are also trivial, and we will use a, b to identify them with T" x C. The isomorphism o
induces an isomorphism on relative tangent bundles do : T'x C — T x C over T'. For any t € T, 0; := 0|(4*),
can be viewed as an isomorphism

ot Eqty = By

which by , is precisely Ji[g,,, for some v, € SLy(Z) satisfying (; 0 a)(t) = b(t). We claim that 7; makes (5)
commute. To see this, for every ¢t € T, the morphism do; : t x C — t x C is given by multiplication by some

complex number, which by the above discussion must be precisely j(v;, a(t)) := m, where v, := [* §].

ct di
Thus, do defines a continuous function T — C sending ¢ — j(~;). It’s values are constrained by the requirement:
1
' )= ——— =[250] €SLy(Z t) = b(t
3 (e, a(t)) cra(t) + dy or some 7 [ct dt] 2(Z), (vt 0 a)(t) (t)

10This is the prestack quotient of H by SL2(Z), see |Stal6| Tag 0440
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For any ¢, the set of 4 satisfying (v:0a)(t) = b(t) is finite and give rise to distinct values of j(v¢, a(t)), which hence
form a discrete subset in C. Thus, since j(;, a(t)) is continuous in ¢, it must be the case that v, : T — SLo(Z) is
constant, with value v € SLy(Z). In particular, the associated 4 makes commute, as desired. This completes
the proof that the functor F is fully faithful on fiber categories, and hence F' is a monomorphism.

To see that it is an epimorphism, we must show that for every elliptic curve E over U € An, there exists a
covering {p; : U; — U} with each p; etale (a local isomorphism), such that Ey, is isomorphic to afE for some
a; : Uy — H. To do this, we may cover U with contractible opens U;, so that each Ey, admits a framing.
Choosing such a framing for each U;, we obtain period maps a; : U; — H and isomorphisms Ey, = aE, as
desired.

O

Definition 5.1.2. For any subgroup I' < SLa(Z) (not necessarily finite index), the stacky quotient [H/T'] carries
the universal family Ep := [E/I'] (the action being as given in (2])), which we call the universal elliptic curve over
[H/T].

5.2 The Tate curve

Our main reference for this section is [Sil94] §V.1.

5.2.1 The Tate curve analytically

For n > 1, let P, be the cyclic subgroup of SLy(Z) generated by the matrix [ 7]. Then P, acts on both H and
E without fixed points, and hence Ep, := [E/P,] = E/P, and [H/P,] = H/P,. The function q := ¢*™" induces
a biholomorphism H/P; = D° := {t € C* : |[t| < 1}, and hence E/P; defines an elliptic curve over the punctured
unit disk D° with parameter ¢, which we call the (analytic) Tate curve Tate®”. Similarly, for general n > 1, we
have a pullback diagram

Epn E— Epl = Tate®”

| |

H/Py —— H/P,

which identifies E/P,, with the pullback of Tate™ by the cyclic n-cover D° — D°. Thus E/P, is an elliptic curve
over D° with local parameter ¢/", which we call the n-sided (analytic) Tate curve Tate?".

Let Hip,1) == {7 € H : R(7) € [0, 1]}, then Tate™ is also obtained by gluing the two sides of the family E[4, ,,
above R(7) = 0 and R(7) = 1 via the “identity map”

E, :=C/(1,7) -5 C/(1,7+ 1) = E, 44
Pick some base point ty € D°, and let v denote a “counterclockwise” generator of WEOP(DO,tO). Then, relative

to the canonical framing on E, from the description above it is clear that the monodromy action of + on
H,(Tatef)',Z) is given by the matrix [§{].

Remark 5.2.1. Let P} := ([ ' 1, ]) C SL2(Z), then note that while the action of P, and P; on H are identical,
their actions on E differ by [—1]. As a result, E/P, and E/P} give elliptic curves over D°, which are fiberwise

identical, but globally nonisomorphic. We call E/P} the twist of the analytic Tate curve Tate™. The fact that
D° has a unique double cover implies that this is the only nontrivial twist.

Proposition 5.2.2. Let V'° C D° be a small punctured disk. Given a subgroup T' < SLo(Z) and a map
B : V' — [H/T] which is “centered at ico”, if f*Er = Tate," |yo, then [§ 7] €T.

Proof. Here, “centered at ioco” means that a sequence in D° converging to 0 € D D D° maps to a sequence
in the coarse space H /T converging to the cusp ioco of H/T'. Let cyc,, : V'° — D’° denote the cyclic n-cover
of a small punctured disk D’° C D°, and let 5y : D'® — [H/SL2(Z)] be the map given by Tate® |po. The
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composition 3; ocyc,, : V'® = [H/SLy(Z)] is then given by Tate}," |yo = *Er = §* pr* Egr,(z). Thus, we have
a (2-)commutative diagram

[T
/ =
VI T Dy [H/SLa(Z)]

Because S is centered at ico, from the above discussion, the image of 71 (D’®) inside 71 ([H/SL2(Z)]) = SLy Z)E
is the cyclic subgroup P;, and hence the image of 71 (V'°) inside 71 ([H/ SL2(Z)]) must be P,. Slnce the image
of m ([H/T]) = m1([H/SL2(Z)]) is T', the commutativity of the diagram then implies that T' O P,, as desired.

O
5.2.2 The Tate curve algebraically
We recall that E, = C/(1, 7) is described as an algebraic curve in PZ by the equations
Y? = 4X% — go(1) X — g3(7)
where
q = 2miT
W = Yo=Y 2L
S = n =
k\q ok(n)q 1—q»
n>1 n>1
27i)
0 = E0 4 2108 ()
(2mi)°
= 1+ 504s5
go(r) = o (—1+ 50455 (a)
and where the coordinate functions X,Y are given by the Weierstrass function and its derivative g, ’. Since
= ‘;f, we see that the holomorphic differential dz on E, corresponds to d@ = dTX on the algebraic curve.

Sometimes it is useful to make the change of variables

X = (2mi)? (x + 112> Y = (2mi)3(2y + )

via which our equation for E, with differential 27idz becomes the Tate curve

dzx

Tate(q) : y° + 2y = 2° + as(q)x + as(q) with differential wean 1= Y
y+x

dX

where a4(q), as(q) € Z[q] are given by

01() = —Bss(q)  and  ag(q) = — 3@ £ T6(0)

12
One calculates that the discriminant and j-invariant of Tate(q) is given by:
A(Tate(q)) = Alg) = q [J (1 — ¢")** € Z[d]

n>1

Jj(Tate(q)) = j(q) = é + 744 +196884q + - - - € Z((q))

Thus, by (6) the Tate curve is an elliptic curve over Z((¢)). For any Z((¢)-algebra R, we define the Tate curve
over R to be the base change of Tate(q)/Z((¢)) to R, which we denote Tate(q)r over R, or just Tate(q)/R if no
confusion may arise.

Over C((¢g'/™)), the Tate curve has a unique nontrivial twist, and hence is not quite characterized by its j-invariant.
It is sometimes useful to distinguish the Tate curve from its twist:

HHere, we use the basepoint afforded by the universal cover H — [H/SL2(Z)], noting that H is homotopy-equivalent to a point.
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Proposition 5.2.3. Let E be an elliptic curve over C((¢"/™)) with j-invariant given by its q-expansion j(q) =
% + 744 4 ---. Let Ey be the special fiber of the minimal reqular model of E over (C[[ql/”]] at ¢*/" = 0. Viewing

q"'™ as a uniformizer at 0 € C, let (H) denote the condition

(H): E admits a Weierstrass equation which defines an analytic family E®™ of (smooth) elliptic curves
over some punctured disk D°(r) of radius r > 0 centered at 0. In this case, let vy be a counterclockwise
loop generating 7,°P(D°(r)), and let E{¢™ denote a smooth fiber of E®".

The following are equivalent:
(a) E is the Tate curve over C((¢*/™)).
(b) Eqy has Kodaira type I,.
(c) ord,i/m A(E) =n.
(d) If (H) holds, then local monodromy of v acting on Hy(E{™,Z) is conjugate to [§1].
Furthermore, the following are equivalent:
(a*) E is the (unique) nontrivial twist of the Tate curve over C((¢*/™)).
(b*) Eo has Kodaira type I.
(c*) ord i/ A(E) = 6 +n.
(d*) If (H) holds, then local monodromy of v acting on Hy(E{"™,Z) is conjugate to — [} 1].

Proof. Since ord /. (j(E)) = —n, the equivalences (b) <= (c) and (b*) <= (c*) follows from Tate’s algorithm
(c.f. Table 4.1 in [Sil94] §IV.9. The equivalences (b) <= (d) and (b*) <= (d*) follows from Kodaira’s
classification of singular fibers (c.f. Table 6 in [BHPVAV04] §V.10). Since C((¢*/™)) has a unique quadratic
extension, Tate(q)/C((¢"/™)) has a unique nontrivial twist. Certainly the Tate curve satisfies (c), and it is easy
to compute that the unique nontrivial twist of the Tate curve satisfies (¢*). This completes the proof. O

Since ay4, ag are just linear combinations of {1, g2, g3}, they converge for all 7 € H, or viewed as functions in ¢,
they converge on the open unit disk D := {g € C : |¢| < 1}. Moreover, it is useful to note that at ¢ = 0, (6)
defines the pointed nodal cubic Tate(0) : y? + 2y = 2® with differential weay := 25%’ and hence the equation
(6) defines a regular and stable (1,1)-curve (resp. analytic family of stable (1,1)-curves) over Z[g] (resp. D),
smooth away from the origin. We remark that while Tate(q)/Z[q'/"] is stable for all n > 1, it is not regular if

n # 1, and the same is true for its analytification.

Let f : Tate(q) — Spec C[¢*/"] be the structure morphism. The direct image dualizing sheaf f.w; is invertible
over C[q'/"] (JDR75] §II, Proposition 1.6). Restriction to Spec C((¢'/™)) gives an injection on global sections:

HO(Tate(Q)/C[[ql/nﬂa fawp) = H° (Tate(q)/@((ql/")), f*Q%ate(q)/c((ql/n)))

We can calculate that wea,y, is in the image of this injection:

Proposition 5.2.4. Let D° := D — {0} be the open punctured unit disk. The differential weq, = Q;fim on

Tate(q)/C((¢*/™)) (resp. Tate®™|ps ) extends to a basis of the dualizing sheaf on Tate(q)/C[q] (resp. Tate® /D).

Proof. We wish to check that wea, = ij_x defines a nonzero section of the dualizing sheaf of the nodal cubic
dz

Ey : y?> + 2y = 3. This is equivalent to checking that viewing Syt7
at the preimages of the node of Fy under the normalization map v : Ey — Eg sum to zero (c.f. [Man99),
§V.1.1). We sketch the calculation here. The node of Ej is situated at (z,y) = (0,0), and the normalization
Ey is isomorphic to P! with parameter t = ¥ and at the level of functions, the map v sends z t2 +¢ and
y +— t(t? +t). The preimages of the node thus lie at ¢ = 0, —1. We have:

as a meromorphic differential, its residues

d 1 2t +1 1 2(t+1) -1
Wean = v - T * = . (+ ) d(t+1)
2y+ax ¢t 22 +3t+1 t+1 2(t4+1)2=3(t+1)+1
From this it is visible that wc., has residues 1, —1 at t = 0, —1 respectively, which proves the proposition. O
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We may also give another characterization of the Tate curve over D°.

Proposition 5.2.5. The map D — ./\/l(l)an induced by Tate®" is etale.

Proof. Let M (1) denote the coarse moduli scheme of M(1). The preimage of ico under the coarse map
¢ : M(1) — M(1) is represented by the (pointed) nodal cubic Tate(0), and since Aut(Tate(0)) = pa, all

automorphisms of Tate(0) extend to all deformations. Thus, by he coarse map ¢ : M(1) — M (1) is etale
above ico. The Tate curve over C[g] defines a map Spec C[gq] — M (1), whose composition

SpecClg] — M(1) — M (1)

is simply given by taking g-expansion of functions on M (1) (as weight 0 modular forms for SLQ(Z) Since g is a
formal uniformizer at ioo € M (1), we find that this composition is unramified. Thus, the map Spec C[q] — M(1
identifes C[¢q] with the completion of the etale local ring of M(1) at Tate(0). By Artin approximation (c..f.
this map factors through an etale morphism U — M(1) with U a finite type C-scheme and ¢ = 0 mapping to
a point u € U. Taking analytifications and restricting to a suitably small neighborhood of u, we find that the
map D — /\/1(1)an is etale at 0 € D.

To see that D — ./\/l(l)an is etale at other points, we note that the map D° — ./\/l(l)an factors as

an

D°2H/P, — [H/SL(Z)] 2 M(1)*™ Cc M(1)

which is obviously etale. O

5.3 Cusps and level structures on the Tate curve
5.3.1 Uniformization of finite etale covers of M(1)¢

In this section, by default everything will be over C. Let p : M — M(1) be a ﬁnitﬂ étale morphism of
connected DM stacks. There is a natural map H — M(1)*® corresponding to the family E/H given by sending
7 +— E.. Via this map, we will identify M (1)*® = [H/SLy(Z)]. Because H is contractible, by the lifting property

of covering maps (|Noo05| §18.18), there exists a lifting u : H — M of H 5 M(1)*™ and a 2-isomorphism ¢
witnessing the 2-commutativity of the following diagram

2

Note that the set of all 2-isomorphisms witnessing the (2-)commutativity of the above diagram is a torsor under
Auty (E) = {£1}. Namely, the possible choices of 2-isomorphisms are {¢, [—1] o ¢}. A choice of such a lifting
H — M? identifies M?** with [H/T] for some finite index I' < SLg(Z) such that the diagram uniquely
determines a 2-commutative diagram

e =] (8)

Hm) [H/ SLQ(Z)] — M(l)an
where prp, prgy,, z), pr denote the canonical projections, and the triangle on the left literally 1-commutes - that
is, proprp = prgp,(z) “on the nose”. More precisely, the triangle 2-commutes, where we may (and will) choose
the 2-isomorphism witnessing the commutativity to be the identity. By definition a uniformization of M?"
is the data of either the diagram or , in particular it includes the 2-isomorphism ¢. Given a choice of

12This follows from the fact that the function field of M (1) is generated by the j-invariant, and the j-invariant of Tate(q) is
precisely the g-expansion of the modular function j
13We follow the definition of finite as given in [Stal6] OCHU. In particular, finite implies representable.
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uniformization, we may identify M?" with [H/I'], so we may sometimes abuse notation and call the isomorphism
M?2 22 [H{/T] a uniformization of M?>".

If M has a moduli interpretation, then the choice of a uniformization of M?" (equivalently, a choice of a
2-commutative diagram as in ) can be thought of as an abstract family of M-level structures on E/H.

5.3.2 Cusps, analytically

The cusps of [H/T], or just T, are the -orbits of points in the boundary Q U {oc} of H (c.f. [DS06| §2.4). The
stabilizer of each cusp in T is a conjugate of a subgroup of P = (£[}1]), and the width of the cusp is by
definition the minimum positive integer p such that a conjugate of [(1) ’1‘] lies in I" and stabilizes the cusp. The
coarse width of the cusp is by definition the minimum positive integer v such that a conjugate of [{ V] or — [§ V]
lies in I' and stabilizes the cusp. If the width equals the coarse width, then the cusp is regular. Otherwise, it is
irregular. Note that for an irregular cusp, the width is always twice the coarse width.

5.3.3 Cusps, framed cusps, and oriented cusps

Suppose p : M — M(1) is finite etale of degree d = [SL2(Z) : T']. In this section, we will define the notions,
in increasing specificity, of “cusp”, “framed cusp”, and “oriented cusp” of M. Intuitively, if M = [H/T'], then
a cusp of M is the same data as a usual cusp of the compact Riemann surface H/T'. A framed cusp is then
the data of a cusp, together with a uniformizer at the corresponding point in the scheme - this corresponds to
an isomorphism class of level structures on the Tate curve. Lastly, an oriented cusp is a choice of a particular
level structure on the Tate curve. There are 2 oriented cusps lying over any given framed cusp if —I ¢ T', and
1 otherwise. In general, given a Katz modular form G, one can only take its g-expansion at an oriented cusp.
However, if the form has even weight, or if the cusp is regular, then for any given framed cusp, the g-expansions
of G do not depend on the choice of an oriented cusp over a given framed cusp. Thus, for g-expansions, the
distinction between framed and oriented is only relevant for odd weight forms at irregular cusps.

Recall that £ is defined to be the universal elliptic curve over the algebraic stack M(1). Let Exq := p*E be
the universal elliptic curve over M. The Tate curve over C((¢)) gives a map Spec C((¢)) — M(1). The pullback
M ate(q) /C(q) = M X (1) Spec C((q)) splits into a disjoint union

Mate(q)/c(q) = || SpecC((q"/"))
i=1
(a finite etale C((¢))-scheme of degree d = [SLy(Z) : I']) The points of this scheme Mmage(q)/c((q)) are called the
cusps of the algebraic stack M, and can be identified with Gal(C((¢'/>))/C((¢)))-orbits of morphisms

¢ : SpecC((¢*/>®) — M

such that the composition cop : Spec C((¢'/*)) — M(1) is isomorphic to the morphism determined by the Tate
curve over C((¢q'/*)). The width of the cusp of M given by a point of M Tate(q) /() With residue field C((g"/m))
is defined to be ;.

For any n > 1, a framed cusp (valued in C((¢*/™))) is by definition the (2-)isomorphism class of a morphism
¢ : SpecC((¢*/™)) — M which factors through Mate(q)/C((q)- The point of Mrraie(q)/c((q) that it factors through
is called its “underlying cusp” |c|.

For any n > 1, an oriented cusp (valued in C((¢*/™))) is by definition a section of M Tate(q) /C(g1/m) OVeT C((g*/™)).
By the definition of the (2-)fiber product, such sections are given by isomorphism classes of pairs (¢, ), where ¢
is a morphism

¢ : SpecC((¢*/™) = M

and ¢ is an isomorphism

¢ c"Ep — Tate(q)/C(g"/")  over C((g"/™) 9)

where here c*E, is the elliptic curve corresponding to p o ¢ : Spec C((¢'/™)) — M(1). An isomorphism between
(¢, ), (¢, ') is an isomorphism f : ¢ — ¢’ in the fiber category M(C((¢'/™))) such that ¢’ o p(f) = ¢.
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Thus, an oriented cusp is represented by a pair (¢, ¢), where we think of ¢ as the underlying framed cusp, and
 is an “orientation”, which picks out a choice of isomorphism with the Tate curve amongst the two possibilities
{¢,[-1]op}. If M is a moduli stack of elliptic curves with level structures, then the set of oriented cusps (valued
in C((¢*/™))) can be identified, via the isomorphism ¢, with the set of M-level structures on Tate(q)/C((¢"/™)).

Let M be the coarse scheme of M. Since C((¢'/*°)) is algebraically closed, the set of framed cusps are in bijection
with the set of ways of filling in the dotted arrow in the diagram

g (10)
Tate(q)
4)

\
\

\

S|

SpecC((q 1/°°)) M(1)

Note that the bottom map corresponds to the unique framed cusp “ico” of M(1). Let M be the smooth
compactification of M, which comes with a canonical map to the coarse moduli scheme M (1) of M(1). By
properness, the choice of a cusp |c| of M determines a unique point of M —M. We call this point the corresponding
cusp of M, which we also denote by |c|. The coarse width of |c| is by definition the ramification index at this point.
If the width is equal to the coarse width, then the cusp is called regular. Otherwise, it is called irregular. One
can verify that this agrees with the notion of (coarse) width and (ir)regular cusps defined in Furthermore,
the number of framed cusps lying over any cusp is equal to the coarse width of that cusp.

If we choose a uniformization M?" = [H/T'], then I is determined up to conjugacy, so whether or not —1I € T is
independent of the choice of uniformization. It follows from the isomorphism M?* = [H /T] that:

Proposition 5.3.1. Let p : M — M(1) be finite etale. Choose a uniformization M = [H/T]. Then the
following are equivalent:

(a) —I €T
(b) There exists an object x € M admitting an automorphism lying over the automorphism [—1] of p(x) € M(1)
(c) Every object x € M admits an automorphism lying over the automorphism [—1] of p(x) € M(1)

For a framed cusp ¢ (valued in C((¢"/™))) the set of pairs (c, ) lying over ¢ is a torsor under Auteqr/ny (Tate(q)) =
{£1}. In particular, this set is precisely {(c,¢), (¢,[—1] o ©)}. These represent the same oriented cusp if and
only if [—1] € Autaq(c), which by the above occurs if and only if —I € I'. Thus, the number of oriented cusps
lying over any framed cusp is 1 if —I € I'; and 2 otherwise. To summarize, we have:

Proposition 5.3.2. Let p : M — M(1) be finite etale. Choose a uniformization M = [H/T]. Let ¢ be a framed
cusp of M, and |c| the underlying cusp. Let e denote the coarse width of |c|. The set of framed cusps lying over
lc| is a torsor under p., and the number of oriented cusps lying over c is 1 if —I1 € T', and 2 otherwise.

5.3.4 Uniformization and cusps

Here we will show that a choice of uniformization of M?" determines an oriented cusp “ic0” of M.

Let us make a choice of uniformization of M®* = [H/T], and let . be the cusp width of ico. Then P, = ([ #]) C
I', and we may further refine the uniformization diagram as:

H/P, —— [H)T] — > M"m
/ | | /
H — H/P, — [H/SLo(Z yan

where the unmarked arrows are the canonical projections. The map H/P; — [H/SLa(Z)] — M(1)?" is given
by the analytic Tate curve Tate™, and hence the composition H /P, — M(1)*" is given by the analytic p-sided
Tate curve Tate" (c.f. §5.2.1). As in , the triangle on the left 2-commutes via the identity 2-isomorphism,
and hence this 2-commutative diagram determines a “analytic oriented cusp” of M?".
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We now argue that this also determines an oriented cusp of M, as follows. Let u denote the cusp width of ioco
on [H/T]. Let I C T" be a torsion-free finite index subgroup such that the cusp ico of H/I” has the same width
p. For example, we may take IV :=T'NT'1(5). Let O(H/P,) denote the ring of holomorphic functions on H/P,
which is meromorphic at “ic0”, and let O(H/T") (resp. O(M(1)®")) be the ring of holomorphic functions on
H /T’ (vesp. M(1)*® = H/SL2(Z)) which are meromorphic at all cusps. Then, we have diagrams

H/T

|

M an

whence a diagram
/P, {/j’/t(ll)“ OGL/F) \
\\)

M(l)an

O(H/T)

O(M(1)™) = C[j]

where the map H/T" — M?" is the composition H/I" — [H/T] — M?", the “central triangle” on the left
2-commutes via ¢, and all other triangles 1-commute (2-commute via the identity 2-isomorphism). Let ¢ be
an isomorphism ¢ : H/P, — D° C C sending “ic0” to “0”. Then, “expanding in ¢’ defines a homomorphism
O(M/P,) — C((t)). There is a canonical choice of ¢, denoted by “q'/#”, which sends P,7 + €2™7/# € D°, and
for any choice of t, we have t = vg'/* for some holomorphic function v : H /P, — C* whose q'/"-expansion lies
in C[¢"/#]*. Since H/T’" and M (1) are algebraic, we obtain a commutative diagra

Spec Clj]

where the map Spec C((t)) — M(1) is the p-sided Tate curve in the uniformizer ¢, and the 2-isomorphism ¢’ is
the “algebraization” of ¢, which exists because the commutativity of the outer triangle imply that the source and
target of ¢ are both twists of the p-sided Tate curve over H/P,,, and two such twists are analytically isomorphic if
and only if they are algebraically isomorphic viewed as elliptic curves over C((¢)). Thus, from the uniformization
u: H — M?* we have defined an oriented cusp of M.

Definition 5.3.3. Given a choice of uniformization of M?" = [H/T"] (given by the data u : H — M?>" and the
2-isomorphism ), let u be the cusp width of ico. Then, the associated oriented cusp “ico” is by definition the

2-commutative triangle

M
SpecC((q"/") —2s M(1)

coming from in , where we have chosen ¢ := ¢'/* to be the function /P, — D° given by P,7 s e2™7/1,

14 As usual, all triangles without indicated 2-isomorphisms actually 1-commute.
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6 Equivalence between Katz and classical modular forms

6.1 Katz modular forms

Let S be a noetherian scheme, and let M(1) be the moduli stack of elliptic curves over S. Let M(1) be the
moduli stack of stable (1,1)-curves (ie, stable 1-pointed curves of genus 1, c.f. |[Knu83| §1). Then M(1) is a
smooth proper DM stack containing M(1) as an open substack. Let W) be the functor which to any stable

(1,1)-curve ¢ : E — T associates the group I'(T, gsw,), where wy is the dualizing sheaf of g.

If g is smooth, then w, = Q}; 7+ T = SpecC and E — T is a nodal cubic, then w, can be identified with
the subsheaf of the sheaf of meromorphic differentials on the normalization of E consisting of those which are
holomorphic away from the preimages of the node, having at worst logarithmic poles at those preimages, and
such that the residues at the preimages sum to 0 (c.f. [Man99), §V.1.1).

The sheaves ¢,w, are invertible Op-modules and commute with arbitrary base change ([DR75] §II, Proposition
1.6). Thus, wiqry defines an invertible sheaf on M(1), called the Hodge bundle. In particular, it is a coherent
sheaf.

Let VI be defined in exactly the same way. That is, for any 7' € An and analytic family of stable (1,1)-

curves ¢ : E — T, Wi associates to &/ — T' the group I'(T), g.w,). Let waq(1)an be the restriction of Wi
to the open substack M(1)*" C M(1)

an

Definition 6.1.1. Let p : M — M(1) be a finite etale morphism (still working over S). Suppose M is an open

substack of a smooth proper DM stack M, and that p extends to a map between compactifications which we

also call p : M — M(1). A (weakly holomorphic) Katz modular form for M of weight k is a global section of
Rk *, Qk * Rk

Wi = P W1y A holomorphic Katz modular form for M of weight k is a global section of w%k =P IO

By the description of pullbacks given in for any morphism 7" — M, if the composition T — M — M(1)
corresponds to the stable curve ¢ : E — T, then we have

®k ) — Ok A _
WD — M) = w2 (T — M = M(D) = D(T, guw,)

Thus, the space of weakly holomorphic (resp. holomorphic) Katz modular forms for M (resp. M) of weight k is
0 k 0 g , Bk
HO(M,w$y) (resp. H (/\/l,w%))

If S = Spec C, the formation of the Hodge bundle commutes with analytiﬁcatiorﬂ That is,

(Wﬂ) an = Wan

Similarly, let wagan := (p™)*wWaq(1)an and wygen 1= (pm‘)*wman.

6.2 Classical modular forms

Let T' < SLy(Z) be a finite index subgroup. Let H denote the upper half plane.

Definition 6.2.1. A classical (weakly holomorphic) modular form for T' of weight & is a holomorphic function
f: H — C satisfying

1. f is modular of weight k for I'. That is, for all y = [2 4] € T, we have f(y7) = (¢t +d)* f(7) for all T € H.
2. f is meromorphic at the cusps.

If f is moreover holomorphic at the cusps, then we call f a holomorphic modular form. A modular form of
weight k& = 0 is called a modular function. The space of weakly holomorphic (resp. holomorphic) modular forms
for I' of weight £ is denoted

M;(T)  (resp. My°(T))

15This is because elliptic curves are proper, and hence all analytic sections of the dualizing sheaf are algebraic.
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Note that since T is finite index inside SLa(Z), for some integer p, we must have [ é ’1‘] € I'. The smallest positive
integer p satisfying this property is called the cusp width of ico relative to I'. By property (1), we have:

fr4+up) = f(r) for all 7 € H

In particular, f is p-periodic, and hence has a Fourier expansion as a Laurent series in ¢'/# := e27i/n,

6.3 From Katz to classical

In this section we return to setting S = SpecC.

Associated to the family E/H, we also have the Hodge bundle wy on H, which for every T € An and every
map T — H we associate the global holomorphic differentials on Er. Since H is contractible, this bundle is
trivial, and is specifically trivialized by the section “dz” which to every 7 € H associates the differential dz on
E, = C/A.. Similarly, dz®* is a nowhere vanishing section of w%k.

Let pt € An denote the 1-point space (with structure sheaf the constant sheaf C)

Let p : M — M(1) be a finite etale morphism of connected DM stacks, extending to a map p : M — M(1)
of smooth proper stacks. Let G be a (weakly holomorphic) Katz modular form for M of weight k - that is, a
global section of w%F.

As in let us choose a uniformization (e.g., a diagram as in @), consisting of a morphism u : H — M?"
and a 2-isomorphism ¢ witnessing the 2-commutativity of the diagram. As in , u factors uniquely through
an equivalence [H/T] & M®" which determines a finite index subgroup I' < SLs(Z).

For any 7 € H, u(7) gives us an object of M?*(pt) whose image p(u(7)) in M(1)*"(pt) is an elliptic curve, which
via ¢ is equipped with an isomorphism

or : Er — p(u(r))
We may evaluate G*" at u(7) to obtain a k-fold differential on p(u(7)), and the pullback ¢XG**(u(7)) must be
Ar (27m'd,z)®’C for some A\, € C. We define the classical modular form fg associated to G as:

fea:H—-C fa(r) = A; (12)
In other words, we have fg(7) = ¢XG**(u(7))/(2midz)®*.
Proposition 6.3.1. The function fo defined above is holomorphic (on H) and is weight k modular for T.

Proof. First we show that it is holomorphic on H. The algebraic section G defines an analytic section G*" of

(w%lk)an = w}%ﬁn, which gives a nowhere vanishing differential G**(u(H)) of the elliptic curve p(u(H)) over H,

and our choice of uniformization gives an isomorphism of elliptic curves over H
pu B = p(u(H))

The function f¢ is just the quotient of ¢%,G**(u(H)) and the nowhere vanishing holomorphic section (2midz)®*
of the holomorphic vector bundle wy;, and hence is holomorphic (on #).
Next we show that fo behaves as expected under I'. Suppose v = [‘; S} € I', then v determines an isomorphism
5

L .+
—z
et +d
Let u(7y,) denote the image of the isomorphism 7, : 7 — 7 in [H/T] under the equivalence [H/T] — M2,
The fact that G*" is a global section of waan then implies (c.f. Example [3.3.1)) that

G (u(7)) = ulyr)" G (u(y7)) = plulyr))" G (u(y7))

where on the right side of the second equality we are viewing G*"(u(y7)) as a differential on the elliptic curve
p(u(y7)). The fact that ¢ witnesses the 2-commutativity of the diagram implies that we have a commutative

’3/7' : ET — E'y'r ’Y(Z + A‘r) = A'y‘r
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diagram
E, —— p(u(r))

b lpm(m)

E,r =% p(u(y7))

From this, we get:
fa(r)(2midzle,)®* = G (u(T)) = @ip(u(rr)) G (u(y7)) = 7" @5, G (u(y7))
Applying (771)* to both sides yields
(3" fo(r)@midzle,)®* = (et + d)* fo(r)(2midz]e,, ) ®* = @5 G* (u(yT))
but the last equality gives us precisely that fg(y7) = (er + d)¥ fo(7), as desired. O

We wish to show that fs is meromorphic at the cusps. For this, it suffices to show that its g-expansion at ioco
lies in (C((ql/ #3). This is a consequence of the fact that we can recover g-expansions algebraically by evaluating

at oriented cusps (c.f. [5.3):

Proposition 6.3.2. Let M — M(1) be finite etale and G a global section ofwjg\’f. Let us choose a uniformization
of M* = [H/T]. By this choice of uniformization defines an oriented cusp “((ic0),¢)” of M - ie, a
diagram

M

(io0) / l

Spec C((g"/*)

Tate(q) M(l)

Let v denote the cusp width of (ico). Let g-exp(fq) denote the q'/* = e2™7/F_expansion of the holomorphic
function fo : H — C. Then, q-exp(fa) is given by the formula

¢*G((io0)) = q-exp(fa)win, (13)

in the 1-dimensional C((q*/*))-vector space T'(Tate(q), Q’lI‘ate(q)/(C((ql/P‘)))' In particular, g-exp(fq) is a finite-tailed

Laurent series, hence is meromorphic at ico. Let d := [SLo(Z) : T']. Let {vi}i=1,....a be representatives of the
cosets SLa(Z) /T, and let p; be the cusp width of v;(ic0). Then M has d-oriented cusps, and the formulas

associated to each oriented cusp gives the expansions of f in 2y /i (a uniformizer at y(ico)) fori=1,...,d.

Proof. The statement up through follows from the definition of fs and the construction of the oriented
cusp “i00” in [5.3.3|associated to our choice of uniformization. The second statement about g-expansions at other
cusps is straightforward to check. O

Remark 6.3.3. Since the passage from Katz to classical involves evaluating the global section G of wj%tk on
individual elliptic curves over C, one might wonder why the Tate curve over C((¢'/#)) plays such a distinguished
role as compared to its twist, since they define analytic families which are fiberwise isomorphic. In this setting
the distinguishing characteristic of the Tate curve is its access to the differential wca,, which coincides with the
differential 2widz € th@ /% On all of H. Any choice of a holomorphic differential on the twist of the Tate curve

over C((¢'/#)) will only agree with 2mwidz on “alternating” vertical strips in H of width z. On the other strips it
will correspond to —2midz.

6.4 From classical to Katz

Let f : H — C be a holomorphic modular form for a finite index subgroup I' < SLy(Z). That is to say, f
satisfies the conditions of and is moreover holomorphic at all cusps. Assume that there is a morphism

of connected smooth proper (algebraic) DM stacks p : M — M(1) such that the restriction of p to the open
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substack M(1) gives a (representable) finite etale morphism M — M(1) whose analytification can be identified
with [H/T] — [H/SL2(Z)] as in

It follows from the results of [BR11] that such compactifications M always exist, though in general the map
p: M — M(1) will not be representable.

We wish to construct, using f, a global section Gy of w%k = p*w?\;{k{l)

. The first step is to construct an analytic

: an Rk
section G pi of W gan -

Let ¢ : E — H be the “universal framed elliptic curve over H” as before. Note that f(7)dz®* is a holomorphic
section of w%k = q*(Q]lE /H)®k. More precisely, to every point 7 € H, f associates the k-fold holomorphic

differential f(7)(2midz)®* on E,. In order to show that the same rule defines a section of w%_[k/r], we must check
that for every 7 € ‘H and « € T inducing the isomorphism
1

’Y:ET%E’)’T ’)’(Z+AT):mZ+A—YT

we have v* f(y7)(27midz)®* = f(1)(2midz)®*. Indeed, by the modular property of f, we have:
v F () (2midz) Sk = f(ym)y* (2midz)®% = f(y7)(er + d) 7 F(2midz)®F = f(7)(2midz)®k

Thus, we will define:
GH(E,) == f(7)(2midz)®" TeH

Now we wish to show that the section G4"(E,) := f(7)(27idz)®* for T € H extends to the cusps. It will suffice
to make the argument for the cusp ico, as the procedure for other cusps is the same.

Since M is assumed Deligne-Mumford, the cusp ico of M admits an etale neighborhood V' — M™ with
V € An. Since M is separated, by shrinking V, we may assume that there is a unique point vo € V whose
image in /\/l(l)an corresponds to a singular curve. Let V° := V — {vg}. By the discussion in the Tate curve
defines an analytic family Tate™ of stable (1,1) curves over the open unit disk D C C whose only singular fiber
lies at 0 € D. Thus, Tate™ /D defines an etale morphism D — M(1) sending 0 — ico (c.f. [5.2.5). By possibly
replacing V' with V' X D, we may moreover assume that we have a commutative diagra

\%
Jp\
D

Because M™" is smooth, V' is smooth, and hence by further shrinking V' around vy, we may assume that V is
biholomorphic to a connected open subset of C. Since vy € V is the only point corresponding to a singular curve,
the map V — D is nonconstant, hence open, and hence by replacing V with a subset V’ C V, and replacing D
with D’ C D, we may assume that p|y, : V' — D’ is a surjection between open disks of positive radius with finite
fibers. Since M3 — M(1)*" is etale, the restriction of p|ys to V’° gives an etale morphism V’'® — D’°, which
being a connected unramified cover of an open punctured disk, must be given by z +— 2™ for some n > 1. Thus,
if ¢ is a parameter on D’°, then ¢'/" is a parameter on V'° and the map V'° — U’° — /\/l(l)an corresponds to
the pullback Tate™ |y7o of Tate™ to V'°. Thus Tate™ |y is a restriction of the n-sided Tate curve Tatel" to a
small punctured disk. By this implies that [} 7] € I'. In particular, f must be n-periodic. Similarly, the
map V' = U’ — /\/1(1)an is given by Tate" |y, which is a stable family of (1, 1)-curves over V', and the same
computation as in shows that wean extends to give a global section of the dualizing sheaf for this family.

——an

i” (14)

an

ét
1%

Tate®? M ( 1)

Since f is n-periodic and holomorphic at ioco, it lifts to a holomorphic function on the disk V' with parameter

¢'/™. Thus, at v € V’ we can define a section G3" of w%kan by

G7"(Tatey" [j1/n=,) == (2m) 7 f (v)wEE

can

16We cannot assume that this is a pullback diagram, since in general p may not be a representable morphism.
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By the formulas in this agrees with our definition G$*(E;) for 7 € H and hence doing this for every cusp,
we have constructed a global analytic section i of w%kan, which defines a morphism

an ., Rk
Gf . OMan — wman

Sinceﬂ is proper, by GAGA (c.f. §4.2), analytification induces an equivalence of categories an : Coh(M) =
Coh(/\/lan), and hence the morphism G%" above corresponds to a morphism

. Rk

which is the desired global section of w%k.

6.5 The equivalence

Definition 6.5.1. For a subgroup I' < SLy(Z), let My (T") denote the C-vector space of weakly holomorphic
modular forms of weight k for I', and M}°!(T") its subspace of holomorphic forms.

We have essentially proven the following result:

Theorem 6.5.2. Let p : M — M(1) be a finite etale morphism (all taken over C), with M connected. Let
M be a smooth compactification of M which is Deligne-Mumford, and such that p extends to a morphism
p: M — M(1). Choose a uniformization M = [H/T] as in . Then, we have an isomorphism of vector
spaces (depending on our choice of uniformization)

HO(Mvw,?;[k) = M/C(F)

restricting to an isomorphism L
HO(M, w8F) = Me!(T)

given by the mutually inverse maps G + fg for G € H°(M, w%k) and f v+ Gy for f € My(T') as described in
3 and 3

Proof. The fact that f — G and G — fg are mutually inverse is essentially clear from definition. The discussion
above certainly proves the second isomorphism. To prove the first, we can use the same argument, but using
dualizing sheaves with bounded poles at the cusps w%k (D) for an appropriate choice of cuspidal divisor D. These
are coherent, and so the same GAGA argument applies. We omit the details. O

7 Arithmetic considerations

7.1 Base change and the ¢-expansion principle

The main result is analogous to the classical g-expansion principle (c.f. Katz [Kat73| §1.6). However, unlike
in Katz [Kat73], which restricted to the case of proper modular schemes and used Grothendieck’s comparison
theorem for formal schemes (which only holds in the proper setting), here we obtain a slightly more general result
by adapting an argument of Brian Conrad in his lecture notes the algebraic theory of q-expansions to apparently

remove the properness assumption. This seems useful for giving an analytic description of arithmetic models for
stacks finite etale over M(1) over some Dedekind ring O (c.f. [7.3.2)).

In this section by default we work over S = Spec O where O is a Noetherian ring.

Let M(1) (resp. M(1)) be the moduli stack of elliptic curves (stable (1,1)-curves) over . Suppose we have
a finite etale morphism of DM stacks p : M — M(1) over O, then we have a notion of a meromorphic Katz
modular form over O - that is, an element of the O-module HO(M,w}%{“) = HO(M, p*w®F).

Theorem 7.1.1 (Flat base change). Let B be a flat O-algebra. There is a canonical isomorphism

H'(Mp,wif,) = HY (M, wiy) ®0 B
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Proof. The point is that global sections can be computed as a kernel (c.f. , and flat base change preserves
kernels. Specifically, let U — M be a etale covering of M, then Up — M p is also an etale covering. Since B is
O-flat, we have a commutative diagram with exact rows (exactness follows from

00— HOM,wF) — 5 W@ () —— WU x2 U)

| l l

0 —— HOM,wSF) @0 B —— wf(U) ®0 B —— (U xx U) @0 B

Since U, U, U xx U and (U xx U)p = Up X x,, Up are schemes, and the restriction of w%f to a scheme is an
ordinary quasicoherent sheaf (§3.2)), by the usual flat base change for quasicoherent sheaves on schemes, we find
that the last two entries of the bottom row are just w%{“ (Up) — w%{kB (Up X x, Up). The exactness then implies

our desired isomorphism.

B

O

Corollary 7.1.2. Given a flat morphism n : SpecC — Spec O, if M is geometrically connected, then let us
choose a uniformization ME* = [H/T] as in §5.3. Then, we have an isomorphism

My(T) = HO(Mc,wiy.) = HO(M,wSyf) @0 C
Proof. Follows directly from [6.5.2] and [7.1.1] O

Due to this equivalence, from now on we will write Katz modular forms also using the letter “ f”.

Given an elliptic curve E over an S-scheme T corresponding to a morphism E/T : T — M(1), the pullback

M(E/T) =M X M(1) T —M

l Jp (15)

T BT M(1)

is finite etale over T, and is called the “scheme of abstract M-level structures on E/T”. The sections of
M(E/T) — T are called “(abstract) M-level structures on E/T” and any such section determines a mor-
phism T" — M lifting E/T : T — M(1) via p. If F is the Tate curve defined over some Z((q)) ®z O-algebra €,
then we will sometimes call an M-level structure on Tate(q)/Q an oriented cusp of M with values in Q.

Now let K be any O-module, and F a quasi-coherent sheaf on M. Let K ® » F denote the sheaf on M associated
to the presheaf of O -modules defined by the rule:

U—->M)— Ko FU—-M) (16)

If U is an affine scheme, then the restriction to U — M of the presheaf given by defines a quasicoherent
sheaf on U. Since restriction commutes with sheafification ([Stal6] 00WY), this implies that (K ®o F)(U —
M) =K ®0o F(U — M) for any morphism U — M with U an affine scheme.

Definition 7.1.3 (g-expansion). Let K be any O-module. Let Q be a Z((q)) ®z O-algebra, and let o be an
M-level structure on Tate(q)/2. From the above discussion, setting F = wﬁak and U = Spec with map
Spec Q — M given by (Tate(q)/Q, «), we get a map

H'(M, K ®¢ wf&k) — H"(SpecQ, K ®0 w%’ie(q)m) = K ®0 H°(Spec Q,w%ﬁe(q)m)

and hence by taking quotients with the canonical differential w2k on Tate(q)/€2, we obtain a map

H M, K ®0 wyf) = K ®0 Q (17)

which is called “taking g-expansions at the oriented cusp (Tate(q)/9, «)”.
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Theorem 7.1.4. Let O be a Dedekind domain with p € O* for some prime p. Let M a connecte@ stack finite
etale over M(1) :== M(1)o, and Q an O-flat Z(q)) ®z O-algebra satisfying:

(x) The map Spec Q — M(1)o = Spec Olj] given by the Tate curve is dominant when restricted to every fiber
over O.

Suppose there exists an M-level structure o on Tate(q)/Q), then the associated q-expansion map is injective
for any O-module KE For examples of Q) satisfying (x), see .

Proof. Let n := p?. By taking a connected component of the fiber product over M(1) with the I';(n)-moduli
stack, M admits a finite etale cover by an irreducible representable stack M’. Since there exists a I'1 (n)-structure
over Z((¢'/™)), we have a commutative diagram

H%M’,K@w%) — % K®o Q[ql/n]

I I

HOM, K @ w®) ——— K ®0 Q

where the top horizontal map is given by the product of the I'y (n)-structure and «. Furthermore, the left vertical
map is injective since M’ — M is a covering in the etale topology. Note that Q[¢'/"] := Q[z]/(z™ —q) is faithfully
flat over €2, and hence it also satisfies (x). Thus, to prove the injectivity of the bottom horizontal map, it suffices
to prove that of the top horizontal map, and hence we may assume M an integral affine scheme, smooth over O.

Writing K as the filtered colimit of its finitely generated submodules, since colimits of injective maps are injective
and cohomology on quasicompact quasiseparated schemes commutes with filtered colimits (|Stal6] 01FF), we
may assume that K is O-finite.

If0 - K’ - K — K" — 0 is an exact sequence of @-modules, then tensoring with the flat O-module w®* and
taking global sections on the top row, and tensoring with the O-flat 2 on the bottom row yields a commutative
diagram with exact rows

0 —— HOM,K' @0 w®) —— H'M,K @0 w®*) —— HO (M, K" @0 w®¥)

| | |

0 —— Ko ——— Ko ——— K'"®0oQ ——— 0

where the vertical maps are given by g-expansion. A diagram chase shows that the result for K’ and K" implies
the result for K, and hence by considering the sequence 0 — Kiors — K — K/Kiors — 0, we may assume that K
is either torsion or torsion-free. In the torsion-free case, since w®* is O-flat, by [Stal6] 0AUU, we may choose an
injection K < O®"  which induces an injection on global sections HO(M, K @0 w®*) — HO(M, O®" @0 w®*),
and hence the torsion-free case is first reduced to the case K = O, and using the flat injection O — Frac O,
then reduced to the case K = Frac O. In the torsion case, since K is finite over the Noetherian O, K. is also
O-finite, so Anne (K) is a nonzero ideal, and hence K is finite over the Artinian ring O/ Annp(K), so K is itself
Artinian, and hence has a (finite) composition serieﬂ Thus, examining the simple composition factors, we are
reduced to the case K = O/m (as O-modules) for some maximal ideal m of O.

Since the ring structure on K is irrelevant, we are reduced to treating the case where K is a field, either Frac O or
O/m for some maximal ideal m. In this case, let M denote the base change of M by the map Spec K — Spec O.
Since the base change map is affine, we have

HOM, K @0 w®*) = H' (Mg, w3f,)

17note that we do not require that M be geometrically connected, though I'm not sure what this buys us.

181f a connected component of a geometric fiber of M is a nontrivial finite etale cover of the corresponding geometric fiber of
M(1), then the condition that there exists a prime p € O* should be superfluous. Indeed, I believe for any Dedekind domain O
having all primes as residue characteristics, it should be the case that 71 (M(1)p) = 71 (Spec O), though I don’t currently have a
proof.

19This seems to be the only case where the Dedekind hypothesis on O is relevant (without it, O/ Annp (K) may not be Artinian,
and hence might not have a finite composition series. I wonder if the theorem is true when O is only assumed a Noetherian domain.
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Since the map M — M (1) is faithfully flat, by property (%), the image of the Tate curve map Spec K ®o 2 —
M contains the generic point of M. Thus, if a global section f € HO(M K,w%ﬁ() were to have vanishing

g-expansion, it must vanish on a dense open subset of Mg. Since w%{“}( is invertible over the integral affine
scheme M, its global sections inject into the stalk over the generic point, hence f must be the zero section.
O

Corollary 7.1.5 (g-expansion principle). Under the hypotheses of |7.1.4), let K be an O-module, L C K a
submodule. Let f € HO(M, K ®w®%) be such that its q-expansion lies in the submodule L ®0 Q C K ®0 Q, then
f comes from an element of H'(M, L @ w®*).

Proof. The exact sequence 0 — L — K — K/L — 0 of O-modules gives an exact sequence of sheaves
0= Low 5 Kow® = (K/L)®w® =0
and hence a exact sequence of cohomology
0— H'M,L®w®) - HO(M, K @ w®*) - HY (M, (K/L) @ w®F)

Applying to the image of f in H°(M, (K/L) ® w®k), we find that the image is 0, and hence f comes from
HO(M, L ®w®). O
Lemma 7.1.6. For any ring A, the map Z((q)) ®z A — A((q)) is injective.

Proof. This follows from Lemma 2.6 in Conrad’s notes Algebraic theory of q-expansions. O

I don’t have a useful classification of the Z((q)) ®z O-algebras © which satisfy property (x) of [7.1.4} though the
property seems to be satisfied by all rings one might consider in practice. For example, we have:

Proposition 7.1.7. Let O be a Dedekind domain, then a Z((q)) ®z O-algebra 2 will satisfy condition (x) of|7.1.4)
in the following cases:

(1) 2= 0(aq)
(2) Q= 0'(q)) for any finite flat extension O of O.

(3) If Q' satisfies (%), then for any morphism of Z((q)) ®z O-algebras Q — ', Q will also satisfy (x) (for
example, if Q C Q' is a subalgebra).

(4) If ¥ satisfies (x), and we have an injection of Z((q)) ®z O-algebras ' C Q with the O-module quotient
Q/Q torsion-free (equivalently, flat), then Q will satisfy (x).

Proof. The morphism in (x) is given by the homomorphism of O-algebras
Oljl = Z(q) ®z 0 = Q

where the first map sends j to its g-expansion j(q) = ¢~ +744+ O(q) (and is clearly injective). We wish to show
that the composition remains injective upon tensoring with K where K = Frac O or K = O/m for any maximal
ideal m of O. In case (1), where Q = O((q)), for K = Frac O, then the injectivity follows from the O-flatness of
K and the injectivity of Z((q)) ®z O — O((¢)) (7.1.6). Thus, let K = O/m. In this case, since O/m is O-finite,
O(q)) ®o (O/m) = (O/m)((q)), so we must demonstrate the injectivity of the map

(O/m)[j] = (O/m)((q))

Indeed, if ¢,j" 4+ -+ 4+ ¢1j + co € (O/m)[j] is a nonzero polynomial of minimium degree with zero image in
(O/m)((q)), then we may assume ¢, # 0 € (O/m). But then its image looks like ¢,,¢~™ + O(¢g~"*!), which can
only be 0 if ¢, = 0, a contradiction.

In case (2), we wish to demonstrate that the composition

Olj] = O0(q) = O'(9)
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remains injective after applying ®o(O/m). We have already demonstrated this for the first map, so we wish
to show that O(q)) ®o (O/m) — O'(q) ®o (O/m) is always injective. For this, it suffices to show that
Tor? (x, O ((q)/O((q))) = 0, or equivalently that the O-module quotient O’ ((¢))/O((¢)) is flat (equivalently torsion-
free). To demonstrate torsion-freeness, it suffices to show that if x € O’ and a € O such that ax € O, then
x € O. In this case, let L := Frac O, then we have a commutative diagram with all morphisms injective

OI®OL<—O/

I |

L+——O

Since ax € O, this implies that e laxz = x € L, but since z € ', z is integral over O, but O is integrally closed,
so this implies that x € O. This proves (2), and the exact same argument establishes (4).

For (3), if O[j] = Q — ' is injective on all fibers over O, then certainly the same must be true of O[j] — Q. O

7.2 Bounded denominators

Remark 7.2.1. In order to connect the notions of analytic g-expansions of modular forms, and arithmetic g-
expansions at level structures on Tate(q)/(2, one must base change to C. The resulting statement one gets might
look somewhat strange. We consider some examples.

Example 7.2.2. Under the hypotheses of suppose furthermore that O C C is a subring, M¢ is connected,
and that there is a map h : Q — C((¢*/™)) of Z((q)) ®z O-algebras for some integer n > 1. Then, we get a
commutative diagram with the middle square cartesian:

Spec C((¢'/™)) —— SpecC @0 (Tate(q)/C2a), Me

\ J{ J/ (18)
Spec(h) (Tate(q)/Q,a)

Spec 2 M

The first map on the top row is given by the Z((¢)) ®z O-algebra map h : Q — C((¢'/™)) and the canonical
inclusion C < C((¢'/™)), and by commutativity, the composite of the top row is given by (Tate(q)/C((¢"/™)), a).
If M@ = [H/TI], then the process of g-expansion (c.f. D by pulling back an element of HO(Mc,w%‘kC) =

H'(M,C®0o wfaf) and dividing by wean actually gives you a g-expansion defined analytically of the corresponding
element of My (T'). As a consequence, noting that C ®¢ 2 consists of finite C-linear combinations of elements of
), we can sometimes obtain nontrivial statements about the Fourier expansions of weakly holomorphic modular

forms (c.f. [7.2.4).

Note that if M is connected, but not geometrically connected (ie Mc¢ is not connected), then by the
g-expansion map HO(MC,w%IZ) — C ®p Q associated to the map SpecC ®p 2 — M will still be injective,
but its composition with C ®» © — C((¢*/™)) will not be injective. Indeed, supposing for simplicity that O ¢ C
is a subfield, let M be the coarse scheme of M, then since the map Spec - M — M is assumed to contain
the generic point, since M is not geometrically connected, by [Stal6] 04KV, it must be the case that O is not
algebraically closed in Frac ). This implies that C®¢ 2 will be a product of extensions of 2, and the g-expansion
map induced by SpecC ®p 2 — M will actually be the product of the g-expansion maps at a cusp on each
component of Mc. Its composition with C ®p Q — C((¢'/™)) will correspond to the g-expansion map at a
particular cusp, corresponding to the choice of the Z((q)) ®z O-algebra morphism A : Q — C((¢*/™)).

Lemma 7.2.3. Let O C Q be a subring. Then we have an equality of subrings of C((q)):

(0(a) ®0 C) (@) = O((a) 20 T

Proof. It’s clear that the right side is contained in the left side. Let L be either Qor C. Given f =Y ,biq" €
Q((g)), f is in O((q)) ®e L if and only if there exist finitely many cy,...,c, € L and g; = Y, ajiq" € O((q)) for
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j € {1,...,n} such that f = Z?Zl ¢;g;j, or equivalently such that b; = Z?Zl cjaj; for all i € Z. Given any
choice of g; € O((q)), the existence of the c;’s amounts to solving a system of linear equations in finitely many
variables, and hence if a solution exists in any extension of QQ, it must exist in Q itself. This implies our desired

equality. Of course this all holds with Q, C replaced by any extension of fields containing O. O

Ezxample 7.2.4. Let p be a rational prime, and A the localization of the ring of integers of some number field
at a prime lying over p. Let M — M(1)4 be a finite etale morphism with M¢ connected with M@ = [#/I].
From (L), the scheme of M-level structures over Tate(q)/A((g)) is finite etale over Spec A((q)), and hence by
Corollary 5.4.3 of [?Chen17] it becomes completely decomposed over O((¢'/¢)), where O is finite etale over A
and e is coprime to p. In particular, p is not invertible in O. Base changing M — M(1)4 to O, choosing an
embedding O C C, and setting Q := O((¢"/¢)) with the natural map to C((¢'/¢)), we find that the scheme of M-
level structures over Tate(q)/ is completely decomposed. Thus, from we find that all Fourier expansions
(ie, at all cusps) of all weakly holomorphic modular forms for I' lie in C ®¢ O((¢'/¢)). It follows from the lemma,
that every modular form with algebraic Fourier coefficients must have Fourier expansions in O((¢'/¢)) ®o Q.
That is to say, they have bounded denominators at p.

Theorem 7.2.5 (Bounded denominators). Let B C Q be a subring, let M — M(1)p be finite etale morphism.
Suppose Mc is connected with analytification isomorphic to [H/T]. Suppose p is not invertible in B, then any
modular form [ € My (T') with algebraic Fourier coefficients has bounded denominators at p.

Proof. By considering a presentation of M, we find that the map M — M(1) g is the base change of a finite etale
morphism M 4 — M(1) 4 via a map Spec B — Spec A with A a finite type Z-algebra with p not invertible. Then,
localizing at a prime lying over p, we are reduced to the situation of[7.2.4] which gives us bounded denominators
at p. O

7.3 Arithmetic models

Situation 7.3.1. Let O C C be a Dedekind subring such that there is a prime p € O*. Let M — M(1)o be finite
etale with Mc connected. Choose a uniformization M2 = [H/I'] as in Suppose there exists an M-level
structure o on Tate(q)/O((¢*/™)), and choose an embedding of Z((q)) ®z O-algebras O((¢*/™)) — C((¢"/™)). Then
taking g-expansions at (Tate(q)/O((¢*/™)), @), we obtain a g-expansion map

H°(Mc,wiy,) = H'(M,C o w®*) — C oo O(q"") < C(q"/™)

From the discussion in the composition of this map with the isomorphism My (T") = H°(Me, w%kc) coming
from our choice of uniformization is given by Fourier expansion at some cusp. By changing our choice of
uniformization (which may involve changing I'), we may assume that the resulting map My(I') — C((¢*/™))
is given by taking expansions in the uniformizer e2¢7/" (ie, g-expansion at ico). On the other hand, by the
g-expansion principle, we find that H°(M,w®*) is identified with the submodule of H*(M, C®0 w®*) = My (T)
whose Fourier expansions lie in the subring O((¢*/™)) € C((¢'/™)). In particular, this implies:

Theorem 7.3.2 (Arithmetic models). In situation taking k = 0, let My(T', O) denote the ring of modular
functions for T' whose e2™7/™-expansions lie in @ C C. Let M be the coarse moduli scheme of M, then M =
Spec My(T", O).

Proof. The discussion above proved that H°(M, O ) = My(T, O). It remains to show that M =2 Spec H(M, O ).
If M is representable, then M = M and the result is clear. In the general case, let M(p?) denote the fine moduli
scheme over O parametrizing elliptic curves with full level p?-structures. Then M (p?) — M(1) is finite etale
(since p € O*) and G-Galois, where G = GLy(Z/p*Z). Then, M’ := M(p*) x pq(1) M is an affine scheme, and
the coarse scheme M can be identified with the quotient of M’ by G in the category of schemes. Thus,

M = Spec H*(M', O )¢,
but M’ — M is a covering of the etale site Mg, and hence by the sheaf condition, we have
HO(M',Op) = H' (M, Om)

which proves the result. O
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8 Appendix - Abstract deformation theory

Classically the deformation theory of an object provides a local picture of the associated moduli stack of the
object. However, given an abstract stack which may or may not have a moduli interpretation, one can still
define an “abstract” deformation theory for the objects of the stack, using which one can then apply Artin
approximation to understand the relation between etale local rings and universal deformation rings of DM stacks
(c.f. , as well as their relation with the etale local rings of their coarse moduli schemes (c.f. . What
appears here are detailed statements of the relevant definitions and some results, with references to the stacks
project where the proofs may be found. Hopefully this is more readable than reading the stacks project directly,
where the relevant material is spread over 600+ pages.

Let M be an algebraic stacl@ over a scheme S. That is, we have a functor p : M — Sch/S such that
e p: M — Sch/S is fibered in groupoids,

e p: M — Sch/S is a stack: I.e., the isom functors are sheaves for the etale topology on Sch/S, and any
etale descent datum for objects of X is effective,

e p: M — Sch/S is algebraic: Le., the diagonal A : M — M xg M is representable by algebraic spaces,
and there is an S-scheme U, and a smooth surjective morphism U — M.

In the above, if U — M can moreover be chosen to be etale, then M is called a Deligne-Mumford (DM) stack.
This is true if and only if the diagonal A : M — M xg M is unramified.

Moreover, we will assume that

e S is locally Noetherian and p : M — Sch/S is locally of finite type: Ie the scheme U can be chosen to be
locally of finite type over S.

Let k be a field, and ¢ : Speck — S a morphism of finite type. This amounts to saying that if s € .S is the image
of 4, then ¢ induces a finite extension of the residue field k¥ D k(s). Moreover, ¢ factors through the inclusion of
an affine open Spec A C S such that induced map A — k is finite, making k into a A-algebra. The fact that S
is locally Noetherian forces A to be Noetherian. We now define the category Cy = Cp i, as follows |Stal6, 06GB|

e The objects of Cp are pairs (A, ) where A is an Artinian local A-algebra and ¢ : A/my — k is an
isomorphism of A-algebras.

e A morphism (B,1) — (A, ) in Cy is given by a local A-algebra homomorphism f : B — A such that if f

denotes the induced map of residue fields, then @ o f = 4.

One can check that Cy is equivalent to the opposite of the category of factorizations Speck — Spec A — S of i
such that A is Artinian local and the induced map A — k identifies k& with the residue field of A.

Let ¢ : Spec k — M be a morphism corresponding to an object of the fiber category M (Speck — S), which we
also call zg. We define the category Fu, := Fa k,z, as follows [Stal6, 07T2]:

e Its objects are morphisms zy — x in M where p(x) = Spec A with A an Artinian local ring and Speck =
p(z0) — p(x) — S is a factorization of i : Speck — S inducing an isomorphism A/m4 — k.

e A morphism (zg — z) — (2o — ') is a commutative diagram in M
T (\— x/
o

Note that the arrows are reversed in the definition of a morphism. There is a natural map, which we also call
p: Fyy — Ca sending (zg — =) — A, where Spec A = p(z).

20see [Stal6| Tag 0260 and [AV02] §2
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Theorem 8.0.1. The functor p : F5, — Ca defined above is a “deformation category”.

Proof. A predeformation category over Cp is by definition a category fibered in groupoids over Cp such that the
fiber category over k is equivalent to a category with a single object and a single morphism [Stal6}, 06GS]. Thus
D : Fgz, — Cp is visibly a predeformation category. A deformation category is a predeformation category which
satisfies the Rim-Schlessinger (RS) conditions [Stal6, 06J1]. By [Stal6, 07TWU], if M is a category fibered in
groupoids satisfying (RS), then the predeformation category F,, is a deformation category. By [Stal6, 0TWQ)],
any algebraic stack over a locally Noetherian scheme S satisfies (RS). O

Remark 8.0.2. For any A € Cy, in the classical situation the objects g — x of F,,(A) are just deformations of
xo over A, and the automorphisms of g — x of F, (A) are precisely the automorphisms of = in M(A) which
restrict to the identity on xy. Namely, these are “infinitesimal automorphisms” [Stal6, 06JN].

Since JFy, is cofibered in groupoids, the sets of isomorphism classes of objects in its fiber categories define a
functor?!| F 5, : Co — Sets sending A € Cy to the set of isomorphism classes mo(Fy,(A4)). We wish to show that
this functor is pro-representable if M is DM. For this, we use Schlessinger’s conditions:

Theorem 8.0.3. F,, is prorepresentable if and only if the following are satisfied
(a) F., is a deformation functor (i.e. its associated category over Ca is a deformation category)
(b) dimy TF,, is finite, and
(c) v :Derp(k, k) — TF,, is injective.

Moreover, condition (a) is equivalent to the condition:

(a’) For every morphism x' — x in Fy, lying over a surjection A" — A in Cp, the map Auta (2') — Auta(z)
s surjective.

Proof. The criteria for prorepresentability is |Stal6, 06JM]. To see that (a) is equivalent to (a’), note that F, is
visibly a predeformation functor, so it is a deformation functor if and only if it satisfies (RS). Various equivalent
conditions to F,, satisfying (RS) are given in [Stal6, 06J8], one of which is (a’). O

Remark 8.0.4. In the classical case the condition (a’) amounts to saying that every automorphism of a deformation
extends to higher order extensions of the deformation.

Theorem 8.0.5. If M is a Deligne-Mumford stack locally of finite type over a locally noetherian scheme S, and
assume the factorization Speck — A discussed above induces a separable extension of residue fields, then F,, is
pro-representable.

Proof. We will verify the conditions (a’), (b), and (c) of Theorem[8.0.3] The separability assumption implies that
Q/a = 0, 50 (c) holds trivially, since Dery (k, k) = Homy(Q24/4,%) = 0. Condition (b) is a consequence of M
being locally of finite type [Stal6, 07X1]. To check (a’) by Remark [8.0.2} it would suffice to check that Auta ()
is trivial for every object x € F, (i.e., there are no infinitesimal automorphisms). Since M is assumed Deligne-
Mumford, the diagonal A : M — M X g M is unramified (in particular, formally unramified), so its inertia stack
is also formally unramified, which is precisely to say that there are no infinitesimal automorphisms. O

Lemma 8.0.6. Let M be an algebraic stack locally of finite type over a locally Noetherian scheme S. Let k be
a field and x : Speck — M be a morphism such that Speck — S is finite type with image s € S. There exists a
versal ring R to M at x. If Og, is a G—rinﬂ then we may find an smooth morphism U — M with U a finite
type S-scheme, and a point u € U with residue field k, such that

(1) Speck — U — M coincides with the given morphism z,

(2) there is an isomorphism (’7U\u =~ R.

21Tn the classical situation this is effectively the deformation functor of the object xg. However we avoid using that terminology
in this abstract setting since “deformation functor” has a technical meaning.
22basically everything that arises in practice is a G-ring
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If M is moreover Deligne-Mumford, then if we choose R to be a universal deformation ring , then the
morphism U — M can be moveover chosen to be etale.

Proof. Everything but the final statement is just [Stal6] Tag ODRO. For the last part, V' be a etale cover of
M, and let v € V be a point lying over z, so that x(v)/k is a finite etale extension. We wish to show that
f:UxmV — Visetale at (v,u). Since f is smooth, it suffices to show that it is (locally) quasi-finite at (v,u).
Let f, : U, — Speck(v) be the fiber of f above v, and let u, denote the point of U, lying over u. By [Stal6|
Tag 01TH, it suffices to show that w, is closed in U, and there does not exist a point 7, € U, which specializes
to u,. For the first part, u, is clearly closed in U, because U, — Spec k(v) is separated, and u, is a section.

For the second part, note that if n, € U, specializes to u,, then its image n € U must specialize to u. Thus, we
must show that any 7 € U specializing to u does not lie in the fiber U,,. Suppose 1 € U specializes to u € U. Then,

since completions are faithfully flat, n lifts to a point in 6\Uu corresponding to some non-maximal prime ideal p
with residue field x(n) = (Ov,u)p/p, which is an Artinian local A-algebra. The map g : Spec k(1) — Spec Oy 4,
corresponds to an object in the deformation category Faq . over Spec k(7). Clearly g does not factor through

Spec k(v). Thus, since 6\UU is universal, the object of Faq , corresponding to g is not isomorphic to the
pullback of some object of M(Speck(v)). By the definition of the 2-fiber product U,, this means that there do
not exist any points of U, lying over 7.

O

Proposition 8.0.7. Let M be a smooth 1-dimensional Deligne-Mumford stack over C, and let ¢ : M — M be
the canonical map to its coarse moduli scheme M. Let x € M be a geometric point with image T € M. Let
Om,z be the etale local ring at x, and Oz the etale local ring at . By Lemma m can be identified
with the universal deformation ring of x. Let G, := Autpm(x), and let K, C G, the subgroup of automorphisms

which extend to the universal deformation of x© over m Then the map c, : SpecOpnq e —+ SpecOnrz @5 a
finite flat totally ramified extension of DVR’s with ramification index equal to the order of the group G./K,.

Proof. Let Mgy := M x s Spec Oprz. From the proof of Theorem 11.3.1 of [Ols16], we find that
Mgy = [Spec O, /G
and moreover the composition
Spec Opt,z — [Spec Oam o/ Ga] — Spec Onz

is finite. Since the map Spec Oy z — M is flat, the projection [Spec Oaq4/Gs] — Spec Onz identifes the
target with the coarse moduli scheme of [Spec Opq,,/G4] (Theorem 11.1.2 of the same book). Thus, we have
Omz = (Oam )%, and since Opq, is a DVR with residue characteristic 0, Oprz is also a DVR. In particular,
the map Spec O, — Spec Oz is a finite map between regular schemes, and hence is flat. Since they are
also strictly henselian, the map is totally ramified. Let K be the kernel of the action of G, on Oxy,z, then the
ramification index is |G, /K|. We wish to show that K = K.

To see this, we use the fact that by the completion O/M\x is the universal deformation ring of the object x.
Thus, it represents the functor F,, which to every Artinian local C-algebra A associates the set of isomorphism
classes:

Fp(A) = {(X/A, ¢ : Xo — 2}/ =

where X is the special fiber of X/A. One can check that the action of G, on ('7/\-/1\90 induces the following action
on the functor F,:
g (X/A )= (X/A,gop) geGy

Thus, the kernel of the action consists precisely of g € G, which extend to every deformation of x. Since M is
Deligne-Mumford, any such extension is unique, and hence K is equivalently the set of automorphisms which

extend to the universal deformation of x over 5/\4\“ which is what we wanted to show.
a
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