
Katz Modular Forms

William Chen

August 25, 2020

Contents
1 Introduction 2

2 Generalities on Sheaves on Stacks 2
2.1 Morphisms of stacks defining morphisms of topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Computing pushforward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 The structure sheaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Types of modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.5 Functoriality for modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.5.1 The case of representable stacks: exactness of f∗ = f−1 on big sites . . . . . . . . . . . . 4
2.6 Analytic spaces and stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Deligne-Mumford stacks 5
3.1 Quasicoherent sheaves on Deligne Mumford stacks . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Sheaves on the small site Xét . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Global sections of sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 GAGA 7
4.1 GAGA for schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 GAGA for stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Moduli of elliptic curves 9
5.1 A universal family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 The Tate curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2.1 The Tate curve analytically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2.2 The Tate curve algebraically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.3 Cusps and level structures on the Tate curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.1 Uniformization of finite etale covers ofM(1)C . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.2 Cusps, analytically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.3 Cusps, framed cusps, and oriented cusps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.4 Uniformization and cusps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Equivalence between Katz and classical modular forms 19
6.1 Katz modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Classical modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 From Katz to classical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4 From classical to Katz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.5 The equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Arithmetic considerations 23
7.1 Base change and the q-expansion principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Bounded denominators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3 Arithmetic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1



8 Appendix - Abstract deformation theory 29

1 Introduction
The goal of these notes is to provide an account of the equivalence between Katz modular forms over C (e.g.,
sections of the Hodge bundle over certain moduli stacks of elliptic curves with level structures) and classical
modular forms defined as holomorphic functions on the upper half plane H. This result, while essentially
“standard”, does not (to my knowledge) seem to have a self-contained reference in the literature. These notes
are my attempt at providing such a reference, in a way which works for any finite index subgroup of SL2(Z) (not
necessarily congruence!). These notes were written mostly for my own benefit. There may be mistakes.

The main result amounts to a GAGA argument, which leads us to work with proper schemes/stacks. In §1-6,
I try to provide a well-referenced account of the equivalence between Katz and classical modular forms without
shying away from stacks. In §7, I prove a version of the q-expansion principle suitable for the noncongruence
setting, and deduce some arithmetic consequences.

A main reference used in these notes is the stacks project [Sta16], which being a work in progress, is best
referenced through the use of “tags”. These are sequences of 4 alphanumerics, which can be looked up here:

https://stacks.math.columbia.edu/tag

2 Generalities on Sheaves on Stacks
Let C be a site, and p : X → C a fibered category. We give X the topology inherited from C. That is, a family
{xi → x}i∈I is a covering in X iff its image in C is a covering family. Thus we may speak of sheaves on X (of
sets, groups, rings, or any “algebraic structure” as described in [Sta16] 00YR).

2.1 Morphisms of stacks defining morphisms of topoi
Now let f : X → Y be a morphism of fibered categories over C, each given the topologies inherited from C. Then,
f is a continuous and cocontinuous functor ([Sta16] 06NW), and we have induced maps of topoi:

(f∗, f
−1) : Sh(X )→ Sh(Y)

given as follows. If G ∈ Sh(Y), then the inverse image f−1(G) is a sheaf on X given by

(f−1(G))(x) := G(f(x)) x ∈ X

This formula defines a sheaf because f is continuous1. For a sheaf F ∈ Sh(X ), the direct image f∗F is given by

f∗F(y) := lim←−
(x,ψ)∈ V Iopp

F(x) for any y ∈ Y

where V I is the category whose objects are (x, ψ) with x ∈ X and ψ : f(x) → y a morphism in Y, and a
morphism (x, ψ) → (x′, ψ′) is a morphism α : x → x′ such that ψ′ ◦ f(α) = ψ. This formula defines a sheaf
because f is cocontinuous2.
Remark 2.1.1. We note that the definitions above seem opposite to what one might expect. For example, if
C = Sch, and X ,Y are representable by schemes X,Y , given a sheaf G on Y , one expects that f∗ should be
simple to define (no limits involved), and f−1 should be more complicated - for example, the usual formula for
f−1G where G is a sheaf on the small Zariski site YZar is:

f−1G(U) = lim−→
V⊃f(U)

G(V ) G ∈ Sh(YZar) (1)

1This formula is denoted fp in [Sta16] 00WU, 06NW, and is equal to fs because f is continuous, and hence sends sheaves to
sheaves.

2This is also denoted pf in [Sta16] 06NW, and is equal to sf because f is cocontinuous - ie, it sends sheaves to sheaves.
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as V ranges over opens. The fact that f∗ is simple when X ,Y are schemes is actually recovered in the next
section §2.2. The fact that f−1 is also simple can be seen as a peculiarity of sheaves on “big sites”. For example,
the reason for the limit in the formula (1) is because given an open immersion U → X (ie, an object of the site
XZar), the composition U → X → Y is typically not an open immersion (ie, is not in YZar), and hence since
G is defined only on YZar, to define (f−1G)(U → X), one must approximate U → X → Y by objects of YZar,
hence the limit in (1). However, if G is actually a sheaf on a big site (Sch/Y )τ (with some appropriate topology
τ), then U → X → Y is an object of Sch/Y , and hence no approximation is needed - one can simply define
(f−1G)(U → X) := G(U → X → Y ). The fact that this gives a sheaf follows from the fact that the functor
f : (Sch/X)τ → (Sch/Y )τ is continuous, which in turn follows tautologically from the definitions of inherited
topologies and morphisms between fibered categories ([Sta16] Tag 06NW).

2.2 Computing pushforward
Now suppose that moreover X ,Y are fibered in groupoids over C, and the morphism f : X → Y is representable.
By definition, this means that for any U ∈ C and morphism U → Y, the fiber product U ×Y X = (C/U) ×Y X
is a representable stack, represented by an object of C, which we call u(U), which comes with canonical maps to
U and to X . This association (U → Y) 7→ (u(U)→ X ) can be made functorial, and as a result by the 2-Yoneda
lemma we have a functor X u← Y which by definition is right adjoint to f (see [Sta16] 06W7 and the ensuing
discussion). In this case, the pushforward f∗ can be more easily computed as:

f∗F(y) = F(u(y)) for any y ∈ Y ([Sta16] 06W8, 00XW)

2.3 The structure sheaf
Suppose O is a sheaf of rings on C making (C,O) into a ringed site. For example, if C = (Sch/S)ét, then
we can give it the structure of a ringed site by taking the structure sheaf O = OS to be given by the rule
O(U → S) := Γ(U,OU ) where OU is the standard structure sheaf on the scheme U , with the obvious restriction
maps. If C = Anét (the category of complex analytic spaces equipped with the etale topology), then its
structure sheaf O is given by the same formula O(U) := Γ(U,OU ) for any U ∈ An, where here OU is the sheaf
of holomorphic functions on U .

The site C can be viewed as the final object in the category of stacks over C, and the structure morphism
p : X → C can be viewed as a morphism to this final object. Thus, as above we may form the pullback p−1O,
and we define the structure sheaf OX of X to be:

OX := p−1O given by OX (x) := O(p(x)) (c.f. [Sta16] 06TU)

More precisely, OX as a functor X → Rings is the composition X p→ C O→ Rings.

By our definition of inverse image sheaves, if f : X → Y is any morphism of fibered categories over the ringed
site C with structure morphisms p : X → C and q : Y → C, then we have:

p−1 = (q ◦ f)−1 = f−1 ◦ q−1 hence OX := p−1O = f−1q−1O =: f−1OY

2.4 Types of modules
Let (S,OS) be a ringed site. In our case we will often want to consider a category fibered in groupoids p : X → C
over the ringed site (C,O), which is either An or Sch/S with the usual structure sheaf, both equipped with the
etale topology, and will set S = X with the inherited topology, and OS = OX := p−1O.

For a sheaf F of OS -modules on the site S, and any object s ∈ S, we may restrict F to the localized site S/s
([Sta16] 00XZ) by the rule

(F|S/s)(s′ → s) := F(s′)

If S = X , then for x ∈ X , let U := p(x). By the 2-Yoneda lemma ([Sta16] 004B), the object x defines a morphism
x : U → X , and Ox := OU = x−1OX = (p ◦ x)−1O. Moreover, the functor p induces an equivalence of sites
X/x→ C/U ([Sta16] 0CN0).

We have the following types of modules (c.f. [Sta16] 03DE, 03DL).
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• We say that F is free if F is isomorphic to a direct sum
⊕

i∈I OS . If I is finite of cardinality r, then we
say that F is finite free of rank r.

• We say that F is locally free if for every s ∈ S, there is a covering {si → s} such that each restriction
F|S/si is a free Osi -module. If they are moreover all finite free, then we say that F is finite locally free.

• We say that F has a global presentation if there is an exact sequence⊕
j∈J
O →

⊕
i∈I
O → F → 0

of O-modules. If I, J are finite, then we say that F has a global finite presentation.

• We say that F is quasi-coherent if for every s ∈ S, there is a covering {si → s} in S such that each
restriction F|S/si is an Osi-module which has a global presentation.

• We say that F is generated by finitely many global sections if there is an integer r ≥ 0 and a surjection
O⊕rS → F .

• We say that F is finite type if for every s ∈ S, there is a covering {si → s} such that each restriction F|S/si
is an Osi-module generated by finitely many global sections.

• We say that F is coherent if F is of finite type, and for every object s ∈ S and any finite set of sections
σ1, . . . , σn ∈ F(s), the kernel of the map (σi) : ⊕ni=1Os → F|s is of finite type on the localized site
(S/s,Os).

2.5 Functoriality for modules
Let S be a scheme, and F a quasi-coherent OS-module. Then for any reasonable topology τ , the rule sending
any f : U → S to Γ(U, f∗F) defines a sheaf of OS-modules on the big site (Sch/S)τ , denoted Fa, and similarly
for the small etale or Zariski sites ([Sta16] 03DU). These sheaves Fa are moreover quasicoherent ([Sta16] 03DV),
and the construction F 7→ Fa determines an equivalence of categories which is compatible with pullback ([Sta16]
03DX, 03LC. See 03DO for the result that pullback preserves quasicoherence):

·a : QCoh(S)→ QCoh((Sch/S)τ ,OS)

(Warning: the composition QCoh(S)→Mod((Sch/S)τ ,OS) is not necessarily exact! See §2.5.1 for an exam-
ple.)

Now suppose f : X → Y is a morphism of fibered categories over the ringed site (C,O). If G is a sheaf of
OY -modules, then for any x ∈ X , f−1G(x) := G(f(x)) which is a (f−1OY)(x) = OY(f(x)) = OX (x)-module,
and so f−1G is naturally an OX -module. Normally, between Mod(OX ),Mod(OY), f∗ is right adjoint to f∗,
which is usually defined as:

f∗G := f−1G ⊗f−1OY OX
but since OX = f−1OY , we find that f∗G = f−1G, so f∗ = f−1 in our setting. Put another way, the fact that
f−1OY = OX implies that the pair (f∗, f

−1) defines a flat morphism of ringed topoi ([Sta16] 04JB)

(f∗, f
−1) : (Sh(X ),OX )→ (Sh(Y),OY)

In particular, f−1 = f∗ : Mod(OY)→Mod(OX ) is exact ([Sta16] 04JC).

2.5.1 The case of representable stacks: exactness of f∗ = f−1 on big sites

The results of 2.5 implies that if f : X → Y is any morphism of schemes, then f∗ = f−1 : Mod((Sch/Y )τ ,OY )→
Mod((Sch/X)τ ,OX ) is exact for any reasonable topology τ . Of course, the analogous statement in the case of
small Zariski sites is far from true (f∗ is only exact if f is flat). Let us see exactly what the difference is:

Consider the map f : SpecF2 → SpecZ. Let F be the quasicoherent sheaf Z̃ on SpecZ. It’s clear that the
map 2 : F → F is injective, but f∗2 : f∗F → f∗F is zero. On the other hand, by the recipe given above,
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F determines a quasicoherent sheaf Fa on the big étale site (Sch/Z)ét, and the map 2a : Fa → Fa is still an
injective map of quasicoherent modules since F 7→ Fa is an equivalence. Applying f∗, we have a morphism
f∗(2a) : f∗Fa → f∗Fa. Since f∗ = f−1, and taking global sections of f∗F over SpecF2, we have

f∗Fa(SpecF2) = Fa(SpecF2
f→ SpecZ) = Γ(SpecF2, f

∗Z̃) = F2

and on this, f∗(2a) is again given by multiplication by 2, and hence is the zero map, so f∗(2a) is not injective!
At first this seems to contradict the stated exactness of f∗ = f−1 on O-modules and the injectivity of 2a.

The fix is to note that the functor F 7→ Fa only gives an equivalence QCoh(SpecZ) → QCoh((Sch/Z)ét,O).
However, the inclusion QCoh((Sch/Z)ét,O) ↪→Mod((Sch/Z)ét,O) is certainly not an equivalence, and more-
over it is not even left exact3! In particular, the map 2a : Fa → Fa is only injective in the category
QCoh((Sch/Z)ét,O) in the sense that it’s quasicoherent kernel is trivial, but not injective inMod((Sch/Z)ét,O).
Indeed, SpecF2 → SpecZ is an object of (Sch/Z)ét, and hence the same computation as above shows that
2a : Fa → Fa has a nontrivial O-module kernel4.

This example illustrates that while f∗ = f−1 is exact on big sites, producing injective maps is “more difficult”.
The fact that f : X → Y (and more generally T → X

f→ Y ) is an object of (Sch/Y )ét implies that an
injective morphism of O-modules on (Sch/Y )ét must by definition be injective on all classical (scheme-theoretic)
pullbacks. This exactly excludes the morphisms which fail to remain injective after applying a classical pullback,
which is “how” f∗ = f−1 manages to be exact on O-modules!

Note that the equivalence ·a : QCoh(X)→ QCoh((Sch/X)ét,OX) and its compatibility with pullback implies
that f∗ = f−1 is not generally left exact as a functor QCoh((Sch/Y )ét,OY ) → QCoh((Sch/X)ét,OX)! It is
exact precisely when the usual pullback f∗ : QCoh(Y )→ QCoh(X) is exact, ie, when f is flat.

2.6 Analytic spaces and stacks
We follow the definitions of [Hal14]. Let An be the category of (complex) analytic spaces. Given an analytic
space X, let |X| denote its underlying topological space. A morphism of analytic spaces is etale if it is an isomor-
phism locally in the analytic topology. Covering families for the (big) etale site Anét (sorry for the notational
inconsistency compared to Sét and (Sch/S)ét) are given by jointly surjective families of etale morphisms.

An analytic space X gives rise to a stack over Anét via its functor of points. We will not distinguish between
an analytic space and its associated stack. A stack Y over Anét is called an analytic stack, and is representable
if it is isomorphic to an analytic space. A 1-morphism U → V of analytic stacks is representable if for any
analytic space X and any 1-morphism X → V, the 2-fiber product U ×V X is representable. If P is a property
of morphisms in An that is stable under base change (e.g. etale, surjective, separated, flat, proper), then a
representable 1-morphism of analytic stacks U → V has P if for any analytic space X and any 1-morphism
X → V, the morphism of analytic spaces U ×V X → X has P .

3 Deligne-Mumford stacks
From now on, let C be the site Anét or a full subcategory of (Sch/S)ét (with the same notion of coverings) for
some fixed noetherian base scheme S. A Deligne-Mumford stack over C is a stack in groupoids p : X → C such
that:

(a) The diagonal ∆ : X → X ×X is representable (by schemes).

(b) There is an object U ∈ C with a surjective etale morphism f : U → X 5.
3More precisely (see [Sta16] 06VE), the inclusion functor is fully faithful, right exact, compatible with colimits and tensor

products...
4this is the same as the kernel viewed sheaves of abelian groups, since the forgetful functor Mod((Sch/Z)ét,O) → Ab((Sch/Z)ét)

is exact [Sta16] 03DA. In particular such kernels can be readily detected on sections.
5Note that this implies that ∆ must be unramified [Sta16] 06MB
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In addition, to fit with the assumptions of [Hal14] (which we use as our reference for GAGA), we will assume
that:

(c) ∆ : X → X ×X is quasicompact and separated.

(d) We may find U as above such that the composition U → X → S is locally of finite type.

Note that for objects U, V ∈ C and a morphism x : U → X and y : V → X , we have a cartesian diagram

U ×x,X ,y V X

U × V X × X

∆X

(x,y)

which shows that any morphism from an analytic space to a stack with representable diagonal is itself repre-
sentable. In particular, (b) makes sense in light of (a). A Deligne-Mumford stack over Anét is called an analytic
DM stack. A DM stack over (Sch/S)ét is called an algebraic DM stack.

3.1 Quasicoherent sheaves on Deligne Mumford stacks
As usual, when speaking of sheaves on stacks, a sheaf on X will refer to a sheaf on the site X equipped with the
topology inherited from C.

Our references to stacky GAGA consider only quasicoherent sheaves on the small etale sites of Deligne Mumford
stacks (see below §3.2), whereas the discussion above only treats quasicoherent sheaves on big sites. However,
for Deligne-Mumford stacks, because such stacks have a presentation describable in the small étale site, the
resulting notions of quasicoherent sheaves are equivalent. That is to say, on a DM stack, a quasicoherent sheaf
on the small site uniquely extends to a quasicoherent sheaf on the big site. The precise details/references are as
follows.

Let p : X → C be a Deligne-Mumford stack, where C is either Anét or (Sch/S)ét for some fixed base scheme S
with the natural structure sheaf. Let U → X be a etale cover with U ∈ C. Then, R := U ×X U ∈ C admits two
maps s, t : R⇒ U , as well as a map c : R×s,U,t R→ R given by

c : R×s,U,t R = U ×X U ×X U
pr02−→ R

The data (U,R, s, t, c) is a groupoid in C ([Sta16] 0230), and the natural map U → X induces an equivalence of
categories [U/R] ∼= X ([Sta16] 04T5).

By definition, a quasi-coherent module on (U,R, s, t, c) is a pair (F , α), where F is a quasi-coherent OU -module
(ie, a module on UZar), and α is an OR-module map

α : t∗F → s∗F

satisfying a certain cocycle condition which is difficult to draw (see [Sta16] 03LI).

In the above, it may seem more correct to require that F be a quasicoherent module on Uét instead of UZar.
However, it turns out the categories of quasicoherent sheaves on these sites are equivalent ([Sta16] 03DR)6

Proposition 3.1.1. The category of quasicoherent modules on X is equivalent to the category of quasicoherent
modules on (U,R, s, t, c).

Proof. Roughly speaking, given a quasicoherent module on X ∼= [U/R], one can restrict it to obtain a quasi-
coherent module on U , and one can show that this satisfies the appropriate compatibilities for it to define a
quasicoherent module on (U,R, s, t, c). For the other direction, a key point is that given a category fibered in
groupoids over a ringed site, the stackification map induces an equivalence on the categories of sheaves, sheaves
of modules, and quasicoherent sheaves of modules ([Sta16] 06WP). Thus, given a quasicoherent module (F , α)
on (U,R, s, t, c), it suffices to construct a quasicoherent module on the prestack quotient [U/pR]. To do this, for
any morphism t : T → U , one simply defines F(T, t) := Γ(T, t∗F). See [Sta16] 06WT for details.

6It seems that one needs to be somewhat careful when speaking about properties of quasicoherent sheaves viewed on Uét vs
UZar. The only cases one needs to be careful are for the properties of locally free and coherent (though finite locally free is fine),
and for coherent, there is no difference as long as U is locally noetherian, which will always be the case in the following.
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3.2 Sheaves on the small site Xét
Given a DM stack p : X → C, let Xét denote the small etale site of X 7. That is, its objects are etale morphisms
U → X with U ∈ C, and coverings are jointly surjective families of etale morphisms. Its structure sheaf, which
we will also denote by OX is just the restriction of the usual structure sheaf to Xét. Our references for GAGA
([Hal14], [Toe99]) will consider quasicoherent sheaves on (Xét,OX ). By 3.1.1 (also see [Sta16] 06WK), any such
quasicoherent sheaf extends uniquely to a quasicoherent sheaf on X , and it’s clear that the notions of finite
locally free and coherent of §2.4 agree whether we are speaking about sheaves on X or Xét.

We will let QCoh(X ) (resp. Coh(X )) be the categories of quasicoherent (resp. coherent) OX modules on X .
Let Mod(Xét) denote the category of OX -modules on Xét.

3.3 Global sections of sheaves
If X is DM stack and F is a quasicoherent sheaf on X , a priori we may only evaluate F on objects of the category
X or Xét, which may not have a final object. Nonetheless, we may define its global sections as

F(X ) := Γ(X ,F) := H0(X ,F) := HomPSh(X )(e,F) = HomMod(Xét)(OX ,F) (c.f. [Sta16] 071D)

where e is the final object in the category of presheaves of sets on X 8. By default, this set of global sections only
has the structure of an abelian group, though if C (with structure sheaf O) has a final object t, then O(t) is a
ring, and H0(X ,F) has the structure of an O(t)-module. By definition, a global section of F is thus the data of
a section of F(x) for every x ∈ X , compatible with all morphisms of the category X . If X is representable by a
scheme/analytic space X then X is a final object of X ,Xét, and so we may take global sections by evaluating F
on X.

Example 3.3.1. While this definition obviously agrees with the classical definition for global sections of sheaves
on schemes, the stacky nature of X gives the definition an added subtlety. For example, a homomorphism
σ : OX → F is a natural transformation of functors, and hence such homomorphisms must be compatible with
the morphisms in the category X . In particular, for T ∈ C and an automorphism a : x→ x in the fiber category
X (T )9, we have automorphisms OX (a) : OX (x)→ OX (x) and F(a) : F(x)→ F(x) (in the “opposite direction”).
By the definition of the structure sheaf, the fact that a lies over idT means that OX (a) = idOX (x), but F(a) may
still be nontrivial. Thus, the functoriality of σ says that the following diagram must commute:

OX (x) F(x)

OX (x) F(x)

σ(x)

OX (a)=idOX (x) F(a)

σ(x)

This says exactly that the image of 1 ∈ OX (x) under σ(a) should be invariant under F(AutX (T )(x)). This
condition corresponds precisely to the transformation law satisfied by modular forms (c.f. Definition 6.2.1
below).

Alternatively, using the equivalence of categories 3.1.1, we may also take global sections via:

F(X ) = H0(X ,F) = Eq
(
F(U)

s∗,t∗

⇒ F(U ×X U)
)

= Ker
(
F(U)

s∗−t∗−→ F(U ×X U)
)

4 GAGA
Let SchLoFT/C denote the category of schemes locally of finite type over C.

7this notation agrees with [Hal14], but disagrees with [Sta16] 06TP.
8Specifically, e is the constant presheaf with value the singleton set
9being a morphism in the fiber category here means that a lies over idT in C
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4.1 GAGA for schemes
This is quoted from SGA [Gro71] Exposé XII, Geometrie algebrique et geometrie analytique.

Let RSC denote the category of spaces ringed in C-algebras. If X is a scheme locally of finite type over C, we
may associate to X the functor:

An→ Sets Z 7→ HomRSC
(Z,X)

By [Gro71] §XII.1.1, this functor is representable by an analytic space, denoted Xan, which is equipped with a
canonical morphism ϕ : Xan → X in RSC inducing an isomorphism of functors An→ Sets:

ϕ∗ : HomRSC
(∗, Xan)

∼−→ HomRSC
(∗, X) f 7→ ϕ ◦ f

In particular, the map ϕ induces a bijection |Xan| → X(C), and the induced maps on local rings are local
homomorphisms which induce isomorphisms on their completions. By the definition of Xan → X, for any
morphism X → Y of locally finite type C-schemes, the map Xan → X → Y factors uniquely through Y an, and
hence the association X 7→ Xan defines a functor called analytification

an : SchLoFT/C→ An X 7→ Xan

To any locally finite type scheme X/C with analytification ϕ : Xan → X and OX -module F , we may form the
pullback ϕ∗F , which is OXan -module. The association

F 7→ F an := ϕ∗F

gives rise to a functorMod(OX)→Mod(OXan) commuting with all inductive limits and takes coherent modules
to coherent modules ([Gro71] §XII.1.3). Moreover, this functor is exact and faithful (hence conservative).

If X is a proper C-scheme, then analytification gives an equivalence of categories Coh(X) ∼= Coh(Xan) (c.f.
[Gro71] §XII.4.4).

4.2 GAGA for stacks
This is mostly quoted from [Hal14] §2 and Toen [Toe99] §5.

There seem to be two notions of analytification for stacks. Let X be an algebraic Deligne-Mumford stack over
(SchLoFT/C)ét, with an etale covering given by U → X with a U scheme. Let R := U ×X U . The analytification
functor an : SchLoFT/C→ An is continuous (for the etale topology), and we let

α : Anét → (SchLoFT/C)ét

denote the corresponding morphism of (big etale) sites. In the rest of this section we may omit the subscript ét,
as we will only consider the etale topology on An and SchLoFT/C.

We may define the analytification X an to be:

• X an := [Ran ⇒ Uan] (as in Hall [Hal14] §2) or

• X an := α∗X (as in Toen [Toe99] Lemme 5.5)

This is denoted α−1X in [Sta16] Tag 04WJ. Presumably this agrees with Toen’s reference pointing to a
definition of Giraud [Gir71] §II.3.2.

We will assume that the two definitions agree (I have not checked it myself: presumably we can show that they
agree on schemes, and that they “preserve” presentations).

As with schemes, the association X  X an is functorial, and from Hall’s definition it is clear that we have a
bijection of sets of points |X an| = |X (C)|.

An algebraic DM stack X is proper if and only if X an is ([Hal14] §2). For any proper algebraic DM stack Y, the
functor induced by analytification:

Hom(X ,Y)→ Hom(X an,Yan)

8



is an equivalence of categories ([Hal14] Theorem C).

Let Cohalg → SchLoFT/C denote the stack of (algebraic) coherent sheaves. Its objects consist of pairs (U,F)
where U ∈ SchLoFT/C and F is a coherent sheaf on U . The structure morphism to SchLoFT/C just forgets
the sheaf F . For two objects (U,F), (V,G), a morphism from (U,F) to (V,G) is a pair (f, b) where f : U → V
is a morphism and b : f∗G → F is an isomorphism in Coh(U). We have an analogous definition of the stack
Cohan → An of coherent analytic sheaves. Clearly both Cohalg,Cohan are stacks in groupoids.

We may form the pushforward stack α∗Cohan, which is a stack in groupoids over (SchLoFT/C)ét. By definition
(c.f. [Sta16] Tag 04WA) the objects of α∗Cohan are pairs (U,F) where U ∈ SchLoFT/C and F ∈ Coh(Uan).
The morphisms of α∗Cohan are pairs (a, b) : (U,F) → (V,G) where a : U → V is a morphism in SchLoFT/C
and b : (aan)∗G → F is an isomorphism in Coh(Uan).

We may also form a pullback stack α∗Cohalg, which is a stack in groupoids overAnét. The definition is somewhat
complicated (c.f. [Sta16] Tag 04WA), but the key point is that α∗ is left adjoint to α∗, and this gives a canonical
equivalence of categories

MorStacks/An(α∗Cohalg,Cohan) ∼= MorStacks/C(Cohalg, α∗Cohan) (c.f. [Sta16] Tag 04WK)

where Stacks/C refers to the (2,1)-category of stacks in groupoids over (SchLoFT/C)ét.

For X ∈ (SchLoFT/C), the analytification functor Coh(X)→ Coh(Xan) defines a morphism in Stacks/C

Cohalg → α∗Cohan defined by (U,F) 7→ (U,Fan)

and hence by adjointness, we obtain a morphism in Stacks/An

ψ : α∗Cohalg → Cohan

For an algebraic DM stack X over SchLoFT/C, we have equivalences of categories

Coh(X ) ∼= HomStacks/C(X ,Cohalg)

Coh(X an) ∼= HomStacks/An(X an,Cohan)

which essentially come from the definition of a coherent sheaf on a stack. Thus, recalling that X an := α∗X , we
now have a functor

Coh(X ) ∼= HomStacks/C(X ,Cohalg) → Hom(X an, α∗Cohalg) → Hom(X an,Cohan) ∼= Coh(X an)
F 7→ α∗F 7→ (ψ ◦ α∗F)

This defines the analytification functor for coherent sheaves on Deligne-Mumford stacks:

an : Coh(X )→ Coh(X an)

If X is proper, then this functor is an equivalence of categories (c.f. [Toe99] §5.10, [Hal14] §2.4).

5 Moduli of elliptic curves

5.1 A universal family
Let M(1) denote the moduli stack of elliptic curves over C, and M(1)an the analytic moduli stack of elliptic
curves - this is a stack over An. Let E denote the universal (stacky) elliptic curve over M(1), and Ean the
universal curve over M(1)an. Given T ∈ An and a morphism f : T → M(1)an, let f∗Ean denote the elliptic
curve over T corresponding to f . In this section we will construct an explicit family of elliptic curves E over the
upper half plane H such that E = [E/ SL2(Z)].

For any τ ∈ H, let Λτ := Z + τZ ⊂ C, and Eτ := C/Λτ . Over H, we have a “universal family” of elliptic curves
E := (H× C)/Z2, where Z2 acts freely by the rule

(a, b) · (τ, z) := (τ, z + aτ + b) a, b ∈ Z, τ ∈ H, z ∈ C

9



Thus, E is a family of elliptic curves over H. In this section we will show that this family carries a canonical
“framing” which makes it into a universal family of framed elliptic curves.

The natural action of SL2(Z) on H lifts to an action on E defined as follows:

γ̃(τ, z) :=

(
γτ,

1

cz + d
· z
)

γ =
[
a b
c d

]
∈ SL2(Z) (2)

Thus, for every γ ∈ SL2(Z), we have a pullback diagram

E E

H H

γ̃

γ

It is a crucial fact, which is straightforward to check, that for any τ, τ ′ ∈ H, we have a bijection

{γ ∈ SL2(Z) : γτ = τ ′} ∼= Isom(Eτ ,Eτ ′) γ 7→ γ̃|Eτ : (3)

and moreover, if γ =
[
a b
c d

]
, then γ̃|Eτ : Eτ → Eτ ′ induces the multiplication-by-j(γ, τ) := 1

cτ+d map on tangent
spaces at the origin. In particular, Aut(Eτ ) ∼= StabSL2(Z)(τ), and the map j(∗, τ) gives an isomorphism

j(∗, τ) : StabSL2(Z)(τ)
∼−→ µn := {e2πi/k : k ∈ {0, 1, 2, . . . , n− 1}}

γ =
[
a b
c d

]
7→ j(γ, τ) :=

1

cτ + d

For any fixed τ, τ ′, the set Isom(Eτ ,E′τ ) is a torsor under Aut(Eτ ) ∼= µn, and the set of j(γ, τ) for γ sending
τ 7→ τ ′ is also a torsor under µn. In particular, the values j(γ, τ) are distinct as γ ranges over StabSL2(Z)(τ).

A framing (c.f. [Hai08] Definition 1.13) on an elliptic curve E is an ordered basis v1, v2 of H1(E,Z) such that
the intersection number v1 · v2 = 1. By Ehresmann’s fibration theorem, any family of elliptic curves E/T is a
locally trivial C∞ fiber bundle. For a contractible open U ⊂ T and s, t ∈ U , the inclusions of Es, Et into EU are
homotopy equivalences, and hence induce isomorphisms

H1(Es,Z) ∼= H1(EU ,Z) ∼= H1(Et,Z) (4)

A locally constant framing on E/T is a family

{v1(t), v2(t) ∈ H1(Et,Z) : v1(t) · v2(t) = 1, t ∈ T}

such that for every contractible open U ⊂ T and s, t ∈ U , (v1(s), v2(s)) maps to (v1(t), v2(t)) under the isomor-
phism (4). A family of elliptic curves E/T is framed if it is equipped with a locally constant framing.

The family E is equipped with a universal locally constant framing, where over τ ∈ H, Eτ is framed by the
homology classes represented by the “straight” path going from 0  1 ∈ C/Λτ , and 0  τ ∈ C/Λτ . A framed
family of elliptic curves (E/T, v1, v2) determines a period mapping

ΦE/T : T → H t 7→

∫
v1(t)

ωt∫
v2(t)

ωt

where for every t we choose some nonzero differential ωt on Et. It’s clear from the formula that the period
map ΦE/T does not depend on this choice of ωt. This period map is holomorphic ([Hai08] Proposition 2.3) and
moreover induces a unique isomorphism ET ∼= E preserving the framings. In particular, H is a fine moduli space
for framed families of elliptic curves ([Hai08], Proposition 2.4).

Proposition 5.1.1. LetM(1)an denote the analytic moduli stack of elliptic curves over Anét. The family E/H
determines a map H → M(1)an which factors, via the canonical covering map prSL2(Z) : H → [H/SL2(Z)],
through an equivalence of stacks [H/ SL2(Z)] ∼=M(1)an.
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Proof. Let [H/p SL2(Z)] be the category fibered in groupoids over An defined as follows10.

• Given an object T ∈ An, the fiber category [H/p SL2(Z)](T ) is the category whose objects are morphisms
T → H, and given a, b : T → H, Mor[H/p SL2(Z)](T )(a, b) = {γ ∈ SL2(Z) : γ ◦ a = b}. We will write such a
morphism as a triple (γ, a, b), or as γ : a→ b.

• The objects of [H/p SL2(Z)] are morphisms T → H, and its image in An is T .

• Given two objects a : T → H and a′ : T ′ → H, the set of morphisms Mor[H/p SL2(Z)](a, a
′) is the disjoint

union ⊔
f∈MorAn(T,T ′)

Mor[H/p SL2(Z)](T )(a, f
∗a′)

where f∗a′ := a ◦ f . The structure morphism [H/p SL2(Z)] → An is given by sending a : T → H to T ,
and sending a morphism in the above disjoint union to the corresponding f .

Then, by definition, there is a morphism [H/p SL2(Z)]→ [H/SL2(Z)] identifying the latter as the stackification
of the former. We will construct a functor

F : [H/p SL2(Z)]→M(1)an

as follows. To any object a : T → H in [H/p SL2(Z)](T ), let F (a) := a∗E, viewed as an elliptic curve over T .
For two objects a, b : T → H in [H/p SL2(Z)], if γ : a→ b in the fiber category over T , then b = γ ◦ a, and hence
γ̃ determines a unique isomorphism a∗E ∼−→ b∗E making the natural diagram commute. We define F (γ : a→ b)
to be this isomorphism. This in turn determines the functor F on all morphisms in [H/p SL2(Z)].

It’s clear from definition that the composition

H
prSL2(Z)−→ [H/p SL2(Z)]

F−→M(1)an

is the morphism determined by the family E/H. Thus, it remains to show that the functor F : [H/p SL2(Z)]→
M(1)an is both a monomorphism and an epimorphism. If this is the case, then by [Noo05] §3.5, it would follow
that F induces an equivalence on stackifications [H/ SL2(Z)]

∼−→M(1)an.

By definition ([Noo05] §3.1), to show that F is a monomorphism, one must show that the restriction of F to
fiber categories [H/p SL2(Z)](T ) is fully faithful. Faithfulness is clear from the construction. To show fullness,
we wish to show that for any a, b : T → H and any isomorphism σ : a∗E ∼−→ b∗E, there is a γ ∈ SL2(Z) such
that γ ◦ a = b and the following diagram commutes:

b∗E E

a∗E E

σ γ̃ (5)

We can reduce to the case where T is connected. The relative tangent bundle at the zero section of E/H is
visibly trivial, and we may identify it with H × C. Being pullbacks of E, the relative tangent bundles at the
zero sections of a∗E, b∗E are also trivial, and we will use a, b to identify them with T × C. The isomorphism σ
induces an isomorphism on relative tangent bundles dσ : T × C → T × C over T . For any t ∈ T , σt := σ|(a∗E)t

can be viewed as an isomorphism
σt : Ea(t) → Eb(t)

which by (3), is precisely γ̃t|Ea(t)
for some γt ∈ SL2(Z) satisfying (γt ◦ a)(t) = b(t). We claim that γ̃t makes (5)

commute. To see this, for every t ∈ T , the morphism dσt : t × C → t × C is given by multiplication by some
complex number, which by the above discussion must be precisely j(γt, a(t)) := 1

cta(t)+dt
, where γt :=

[
at bt
ct dt

]
.

Thus, dσ defines a continuous function T → C sending t 7→ j(γt). It’s values are constrained by the requirement:

j(γt, a(t)) =
1

cta(t) + dt
for some γt =

[
at bt
ct dt

]
∈ SL2(Z), (γt ◦ a)(t) = b(t)

10This is the prestack quotient of H by SL2(Z), see [Sta16] Tag 044O
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For any t, the set of γt satisfying (γt◦a)(t) = b(t) is finite and give rise to distinct values of j(γt, a(t)), which hence
form a discrete subset in C. Thus, since j(γt, a(t)) is continuous in t, it must be the case that γt : T → SL2(Z) is
constant, with value γ ∈ SL2(Z). In particular, the associated γ̃ makes (5) commute, as desired. This completes
the proof that the functor F is fully faithful on fiber categories, and hence F is a monomorphism.

To see that it is an epimorphism, we must show that for every elliptic curve E over U ∈ An, there exists a
covering {pi : Ui → U} with each pi etale (a local isomorphism), such that EUi is isomorphic to a∗iE for some
ai : Ui → H. To do this, we may cover U with contractible opens Ui, so that each EUi admits a framing.
Choosing such a framing for each Ui, we obtain period maps ai : Ui → H and isomorphisms EUi ∼= a∗iE, as
desired.

Definition 5.1.2. For any subgroup Γ ≤ SL2(Z) (not necessarily finite index), the stacky quotient [H/Γ] carries
the universal family EΓ := [E/Γ] (the action being as given in (2)), which we call the universal elliptic curve over
[H/Γ].

5.2 The Tate curve
Our main reference for this section is [Sil94] §V.1.

5.2.1 The Tate curve analytically

For n ≥ 1, let Pn be the cyclic subgroup of SL2(Z) generated by the matrix [ 1 n
0 1 ]. Then Pn acts on both H and

E without fixed points, and hence EPn := [E/Pn] = E/Pn and [H/Pn] = H/Pn. The function q := e2πiτ induces
a biholomorphism H/P1

∼= D◦ := {t ∈ C× : |t| < 1}, and hence E/P1 defines an elliptic curve over the punctured
unit disk D◦ with parameter q, which we call the (analytic) Tate curve Tatean. Similarly, for general n ≥ 1, we
have a pullback diagram

EPn EP1
= Tatean

H/Pn H/P1

which identifies E/Pn with the pullback of Tatean by the cyclic n-cover D◦ → D◦. Thus E/Pn is an elliptic curve
over D◦ with local parameter q1/n, which we call the n-sided (analytic) Tate curve Tatean

n .

Let H[0,1] := {τ ∈ H : <(τ) ∈ [0, 1]}, then Tatean is also obtained by gluing the two sides of the family E|H[0,1]

above <(τ) = 0 and <(τ) = 1 via the “identity map”

Eτ := C/〈1, τ〉 id−→ C/〈1, τ + 1〉 =: Eτ+1

Pick some base point t0 ∈ D◦, and let γ denote a “counterclockwise” generator of πtop
1 (D◦, t0). Then, relative

to the canonical framing on E, from the description above it is clear that the monodromy action of γ on
H1(Tatean

t0 ,Z) is given by the matrix [ 1 1
0 1 ].

Remark 5.2.1. Let P ∗n := 〈
[−1 1

0 −1

]
〉 ⊂ SL2(Z), then note that while the action of Pn and P ∗n on H are identical,

their actions on E differ by [−1]. As a result, E/Pn and E/P ∗n give elliptic curves over D◦, which are fiberwise
identical, but globally nonisomorphic. We call E/P ∗n the twist of the analytic Tate curve Tatean. The fact that
D◦ has a unique double cover implies that this is the only nontrivial twist.

Proposition 5.2.2. Let V ′◦ ⊂ D◦ be a small punctured disk. Given a subgroup Γ ≤ SL2(Z) and a map
β : V ′◦ → [H/Γ] which is “centered at i∞”, if β∗EΓ

∼= Tatean
n |V ′◦ , then [ 1 n

0 1 ] ∈ Γ.

Proof. Here, “centered at i∞” means that a sequence in D◦ converging to 0 ∈ D ⊃ D◦ maps to a sequence
in the coarse space H/Γ converging to the cusp i∞ of H/Γ. Let cycn : V ′◦ → D′◦ denote the cyclic n-cover
of a small punctured disk D′◦ ⊂ D◦, and let β1 : D′◦ → [H/ SL2(Z)] be the map given by Tatean |D′◦ . The
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composition β1 ◦ cycn : V ′◦ → [H/ SL2(Z)] is then given by Tatean
n |V ′◦ ∼= β∗EΓ = β∗ pr∗ ESL2(Z). Thus, we have

a (2-)commutative diagram
[H/Γ]

V ′◦ D′◦ [H/ SL2(Z)]

pr
β

cycn Tatean

Because β is centered at i∞, from the above discussion, the image of π1(D′◦) inside π1([H/ SL2(Z)]) = SL2(Z)11

is the cyclic subgroup P1, and hence the image of π1(V ′◦) inside π1([H/SL2(Z)]) must be Pn. Since the image
of π1([H/Γ])→ π1([H/ SL2(Z)]) is Γ, the commutativity of the diagram then implies that Γ ⊃ Pn, as desired.

5.2.2 The Tate curve algebraically

We recall that Eτ = C/〈1, τ〉 is described as an algebraic curve in P2
C by the equations

Y 2 = 4X3 − g2(τ)X − g3(τ)

where

q := e2πiτ

sk(q) :=
∑
n≥1

σk(n)qn =
∑
n≥1

nkqn

1− qn

g2(τ) :=
(2πi)4

12
(1 + 240s3(q))

g3(τ) :=
(2πi)6

216
(−1 + 504s5(q))

and where the coordinate functions X,Y are given by the Weierstrass function and its derivative ℘, ℘′. Since
℘′ := d℘

dz , we see that the holomorphic differential dz on Eτ corresponds to d℘
℘′ = dX

Y on the algebraic curve.
Sometimes it is useful to make the change of variables

X = (2πi)2

(
x+

1

12

)
Y = (2πi)3(2y + x)

via which our equation for Eτ with differential 2πidz becomes the Tate curve

Tate(q) : y2 + xy = x3 + a4(q)x+ a6(q) with differential ωcan :=
dx

2y + x
= 2πi

dX

Y
= 2πidz (6)

where a4(q), a6(q) ∈ Z[[q]] are given by

a4(q) = −5s3(q) and a6(q) = −5s3(q) + 7s5(q)

12

One calculates that the discriminant and j-invariant of Tate(q) is given by:

∆(Tate(q)) = ∆(q) = q
∏
n≥1

(1− qn)24 ∈ Z[[q]]

j(Tate(q)) = j(q) =
1

q
+ 744 + 196884q + · · · ∈ Z((q))

Thus, by (6) the Tate curve is an elliptic curve over Z((q)). For any Z((q))-algebra R, we define the Tate curve
over R to be the base change of Tate(q)/Z((q)) to R, which we denote Tate(q)R over R, or just Tate(q)/R if no
confusion may arise.

Over C((q1/n)), the Tate curve has a unique nontrivial twist, and hence is not quite characterized by its j-invariant.
It is sometimes useful to distinguish the Tate curve from its twist:

11Here, we use the basepoint afforded by the universal cover H → [H/SL2(Z)], noting that H is homotopy-equivalent to a point.
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Proposition 5.2.3. Let E be an elliptic curve over C((q1/n)) with j-invariant given by its q-expansion j(q) =
1
q + 744 + · · · . Let E0 be the special fiber of the minimal regular model of E over C[[q1/n]] at q1/n = 0. Viewing
q1/n as a uniformizer at 0 ∈ C, let (H) denote the condition

(H): E admits a Weierstrass equation which defines an analytic family Ean of (smooth) elliptic curves
over some punctured disk D◦(r) of radius r > 0 centered at 0. In this case, let γ be a counterclockwise
loop generating πtop

1 (D◦(r)), and let Ean
1 denote a smooth fiber of Ean.

The following are equivalent:

(a) E is the Tate curve over C((q1/n)).

(b) E0 has Kodaira type In.

(c) ordq1/n ∆(E) = n.

(d) If (H) holds, then local monodromy of γ acting on H1(Ean
1 ,Z) is conjugate to [ 1 1

0 1 ].

Furthermore, the following are equivalent:

(a*) E is the (unique) nontrivial twist of the Tate curve over C((q1/n)).

(b*) E0 has Kodaira type I∗n.

(c*) ordq1/n ∆(E) = 6 + n.

(d*) If (H) holds, then local monodromy of γ acting on H1(Ean
1 ,Z) is conjugate to − [ 1 1

0 1 ].

Proof. Since ordq1/n(j(E)) = −n, the equivalences (b)⇐⇒ (c) and (b*)⇐⇒ (c*) follows from Tate’s algorithm
(c.f. Table 4.1 in [Sil94] §IV.9. The equivalences (b) ⇐⇒ (d) and (b*) ⇐⇒ (d*) follows from Kodaira’s
classification of singular fibers (c.f. Table 6 in [BHPVdV04] §V.10). Since C((q1/n)) has a unique quadratic
extension, Tate(q)/C((q1/n)) has a unique nontrivial twist. Certainly the Tate curve satisfies (c), and it is easy
to compute that the unique nontrivial twist of the Tate curve satisfies (c*). This completes the proof.

Since a4, a6 are just linear combinations of {1, g2, g3}, they converge for all τ ∈ H, or viewed as functions in q,
they converge on the open unit disk D := {q ∈ C : |q| < 1}. Moreover, it is useful to note that at q = 0, (6)
defines the pointed nodal cubic Tate(0) : y2 + xy = x3 with differential ωcan := dx

2y+x , and hence the equation
(6) defines a regular and stable (1,1)-curve (resp. analytic family of stable (1,1)-curves) over Z[[q]] (resp. D),
smooth away from the origin. We remark that while Tate(q)/Z[[q1/n]] is stable for all n ≥ 1, it is not regular if
n 6= 1, and the same is true for its analytification.

Let f : Tate(q) → SpecC[[q1/n]] be the structure morphism. The direct image dualizing sheaf f∗ωf is invertible
over C[[q1/n]] ([DR75] §II, Proposition 1.6). Restriction to SpecC((q1/n)) gives an injection on global sections:

H0(Tate(q)/C[[q1/n]], f∗ωf ) ↪→ H0(Tate(q)/C((q1/n)), f∗Ω
1
Tate(q)/C((q1/n)))

We can calculate that ωcan is in the image of this injection:

Proposition 5.2.4. Let D◦ := D − {0} be the open punctured unit disk. The differential ωcan := dx
2y+x on

Tate(q)/C((q1/n)) (resp. Tatean |D◦) extends to a basis of the dualizing sheaf on Tate(q)/C[[q]] (resp. Tatean /D).

Proof. We wish to check that ωcan = dx
2y+x defines a nonzero section of the dualizing sheaf of the nodal cubic

E0 : y2 + xy = x3. This is equivalent to checking that viewing dx
2y+x as a meromorphic differential, its residues

at the preimages of the node of E0 under the normalization map ν : Ẽ0 → E0 sum to zero (c.f. [Man99],
§V.1.1). We sketch the calculation here. The node of E0 is situated at (x, y) = (0, 0), and the normalization
Ẽ0 is isomorphic to P1 with parameter t = y

x , and at the level of functions, the map ν sends x 7→ t2 + t and
y 7→ t(t2 + t). The preimages of the node thus lie at t = 0,−1. We have:

ωcan =
dx

2y + x
=

1

t
· 2t+ 1

2t2 + 3t+ 1
dt =

1

t+ 1
· 2(t+ 1)− 1

2(t+ 1)2 − 3(t+ 1) + 1
d(t+ 1)

From this it is visible that ωcan has residues 1,−1 at t = 0,−1 respectively, which proves the proposition.
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We may also give another characterization of the Tate curve over D◦.

Proposition 5.2.5. The map D →M(1)
an

induced by Tatean is etale.

Proof. Let M(1) denote the coarse moduli scheme of M(1). The preimage of i∞ under the coarse map
c : M(1) → M(1) is represented by the (pointed) nodal cubic Tate(0), and since Aut(Tate(0)) = µ2, all
automorphisms of Tate(0) extend to all deformations. Thus, by 8.0.7, the coarse map c :M(1)→M(1) is etale
above i∞. The Tate curve over C[[q]] defines a map SpecC[[q]]→M(1), whose composition

SpecC[[q]]→M(1)→M(1)

is simply given by taking q-expansion of functions onM(1) (as weight 0 modular forms for SL2(Z))12. Since q is a
formal uniformizer at i∞ ∈M(1), we find that this composition is unramified. Thus, the map SpecC[[q]]→M(1)
identifes C[[q]] with the completion of the etale local ring ofM(1) at Tate(0). By Artin approximation (c..f. 8.0.6)
this map factors through an etale morphism U → M(1) with U a finite type C-scheme and q = 0 mapping to
a point u ∈ U . Taking analytifications and restricting to a suitably small neighborhood of u, we find that the
map D →M(1)

an
is etale at 0 ∈ D.

To see that D →M(1)
an

is etale at other points, we note that the map D◦ →M(1)
an

factors as

D◦ ∼= H/P1 → [H/SL2(Z)] ∼=M(1)an ⊂M(1)
an
,

which is obviously etale.

5.3 Cusps and level structures on the Tate curve
5.3.1 Uniformization of finite etale covers of M(1)C

In this section, by default everything will be over C. Let p : M → M(1) be a finite13 étale morphism of
connected DM stacks. There is a natural map H →M(1)an corresponding to the family E/H given by sending
τ 7→ Eτ . Via this map, we will identifyM(1)an = [H/ SL2(Z)]. Because H is contractible, by the lifting property
of covering maps ([Noo05] §18.18), there exists a lifting u : H →Man of H E→M(1)an and a 2-isomorphism ϕ
witnessing the 2-commutativity of the following diagram

Man

H M(1)an

pu

E

ϕ
(7)

Note that the set of all 2-isomorphisms witnessing the (2-)commutativity of the above diagram is a torsor under
AutH(E) = {±1}. Namely, the possible choices of 2-isomorphisms are {ϕ, [−1] ◦ ϕ}. A choice of such a lifting
H → Man identifies Man with [H/Γ] for some finite index Γ ≤ SL2(Z) such that the diagram (7) uniquely
determines a 2-commutative diagram

[H/Γ] Man

H [H/ SL2(Z)] M(1)an

pr

∼

pprΓ

prSL2(Z) ∼

ϕ
(8)

where prΓ,prSL2(Z),pr denote the canonical projections, and the triangle on the left literally 1-commutes - that
is, pr ◦ prΓ = prSL2(Z) “on the nose”. More precisely, the triangle 2-commutes, where we may (and will) choose
the 2-isomorphism witnessing the commutativity to be the identity. By definition a uniformization of Man

is the data of either the diagram (7) or (8), in particular it includes the 2-isomorphism ϕ. Given a choice of

12This follows from the fact that the function field of M(1) is generated by the j-invariant, and the j-invariant of Tate(q) is
precisely the q-expansion of the modular function j

13We follow the definition of finite as given in [Sta16] 0CHU. In particular, finite implies representable.
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uniformization, we may identifyMan with [H/Γ], so we may sometimes abuse notation and call the isomorphism
Man ∼= [H/Γ] a uniformization ofMan.

If M has a moduli interpretation, then the choice of a uniformization of Man (equivalently, a choice of a
2-commutative diagram as in (7)) can be thought of as an abstract family ofM-level structures on E/H.

5.3.2 Cusps, analytically

The cusps of [H/Γ], or just Γ, are the Γ-orbits of points in the boundary Q ∪ {∞} of H (c.f. [DS06] §2.4). The
stabilizer of each cusp in Γ is a conjugate of a subgroup of ±P = 〈± [ 1 1

0 1 ]〉, and the width of the cusp is by
definition the minimum positive integer µ such that a conjugate of

[
1 µ
0 1

]
lies in Γ and stabilizes the cusp. The

coarse width of the cusp is by definition the minimum positive integer ν such that a conjugate of [ 1 ν
0 1 ] or − [ 1 ν

0 1 ]
lies in Γ and stabilizes the cusp. If the width equals the coarse width, then the cusp is regular. Otherwise, it is
irregular. Note that for an irregular cusp, the width is always twice the coarse width.

5.3.3 Cusps, framed cusps, and oriented cusps

Suppose p : M → M(1) is finite etale of degree d = [SL2(Z) : Γ]. In this section, we will define the notions,
in increasing specificity, of “cusp”, “framed cusp”, and “oriented cusp” of M. Intuitively, if Man = [H/Γ], then
a cusp of M is the same data as a usual cusp of the compact Riemann surface H/Γ. A framed cusp is then
the data of a cusp, together with a uniformizer at the corresponding point in the scheme - this corresponds to
an isomorphism class of level structures on the Tate curve. Lastly, an oriented cusp is a choice of a particular
level structure on the Tate curve. There are 2 oriented cusps lying over any given framed cusp if −I /∈ Γ, and
1 otherwise. In general, given a Katz modular form G, one can only take its q-expansion at an oriented cusp.
However, if the form has even weight, or if the cusp is regular, then for any given framed cusp, the q-expansions
of G do not depend on the choice of an oriented cusp over a given framed cusp. Thus, for q-expansions, the
distinction between framed and oriented is only relevant for odd weight forms at irregular cusps.

Recall that E is defined to be the universal elliptic curve over the algebraic stack M(1). Let EM := p∗E be
the universal elliptic curve overM. The Tate curve over C((q)) gives a map SpecC((q))→M(1). The pullback
MTate(q)/C((q)) :=M×M(1) SpecC((q)) splits into a disjoint union

MTate(q)/C((q))
∼=

r⊔
i=1

SpecC((q1/µi))

(a finite etale C((q))-scheme of degree d = [SL2(Z) : Γ]) The points of this schemeMTate(q)/C((q))) are called the
cusps of the algebraic stackM, and can be identified with Gal(C((q1/∞))/C((q)))-orbits of morphisms

c : SpecC((q1/∞))→M

such that the composition c ◦ p : SpecC((q1/∞))→M(1) is isomorphic to the morphism determined by the Tate
curve over C((q1/∞)). The width of the cusp ofM given by a point ofMTate(q)/C((q)) with residue field C((q1/µi))
is defined to be µi.

For any n ≥ 1, a framed cusp (valued in C((q1/n))) is by definition the (2-)isomorphism class of a morphism
c : SpecC((q1/n))→M which factors throughMTate(q)/C((q)). The point ofMTate(q)/C((q)) that it factors through
is called its “underlying cusp” |c|.

For any n ≥ 1, an oriented cusp (valued in C((q1/n))) is by definition a section ofMTate(q)/C((q1/n)) over C((q1/n)).
By the definition of the (2-)fiber product, such sections are given by isomorphism classes of pairs (c, ϕ), where c
is a morphism

c : SpecC((q1/n))→M

and ϕ is an isomorphism
ϕ : c∗EM

∼−→ Tate(q)/C((q1/n)) over C((q1/n)) (9)

where here c∗EM is the elliptic curve corresponding to p ◦ c : SpecC((q1/n))→M(1). An isomorphism between
(c, ϕ), (c′, ϕ′) is an isomorphism f : c

∼−→ c′ in the fiber categoryM(C((q1/n))) such that ϕ′ ◦ p(f) = ϕ.
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Thus, an oriented cusp is represented by a pair (c, ϕ), where we think of c as the underlying framed cusp, and
ϕ is an “orientation”, which picks out a choice of isomorphism with the Tate curve amongst the two possibilities
{ϕ, [−1]◦ϕ}. IfM is a moduli stack of elliptic curves with level structures, then the set of oriented cusps (valued
in C((q1/n))) can be identified, via the isomorphism ϕ, with the set ofM-level structures on Tate(q)/C((q1/n)).

LetM be the coarse scheme ofM. Since C((q1/∞)) is algebraically closed, the set of framed cusps are in bijection
with the set of ways of filling in the dotted arrow in the diagram

M

SpecC((q1/∞)) M(1)

p

Tate(q)

(10)

Note that the bottom map corresponds to the unique framed cusp “i∞” of M(1). Let M be the smooth
compactification of M , which comes with a canonical map to the coarse moduli scheme M(1) of M(1). By
properness, the choice of a cusp |c| ofM determines a unique point ofM−M . We call this point the corresponding
cusp ofM , which we also denote by |c|. The coarse width of |c| is by definition the ramification index at this point.
If the width is equal to the coarse width, then the cusp is called regular. Otherwise, it is called irregular. One
can verify that this agrees with the notion of (coarse) width and (ir)regular cusps defined in §5.3.2. Furthermore,
the number of framed cusps lying over any cusp is equal to the coarse width of that cusp.

If we choose a uniformizationMan = [H/Γ], then Γ is determined up to conjugacy, so whether or not −I ∈ Γ is
independent of the choice of uniformization. It follows from the isomorphismMan = [H/Γ] that:

Proposition 5.3.1. Let p : M → M(1) be finite etale. Choose a uniformization Man = [H/Γ]. Then the
following are equivalent:

(a) −I ∈ Γ

(b) There exists an object x ∈M admitting an automorphism lying over the automorphism [−1] of p(x) ∈M(1)

(c) Every object x ∈M admits an automorphism lying over the automorphism [−1] of p(x) ∈M(1)

For a framed cusp c (valued in C((q1/n))) the set of pairs (c, ϕ) lying over c is a torsor under AutC((q1/n))(Tate(q)) =
{±1}. In particular, this set is precisely {(c, ϕ), (c, [−1] ◦ ϕ)}. These represent the same oriented cusp if and
only if [−1] ∈ AutM(c), which by the above occurs if and only if −I ∈ Γ. Thus, the number of oriented cusps
lying over any framed cusp is 1 if −I ∈ Γ, and 2 otherwise. To summarize, we have:

Proposition 5.3.2. Let p :M→M(1) be finite etale. Choose a uniformizationM = [H/Γ]. Let c be a framed
cusp ofM, and |c| the underlying cusp. Let e denote the coarse width of |c|. The set of framed cusps lying over
|c| is a torsor under µe, and the number of oriented cusps lying over c is 1 if −I ∈ Γ, and 2 otherwise.

5.3.4 Uniformization and cusps

Here we will show that a choice of uniformization ofMan determines an oriented cusp “i∞” ofM.

Let us make a choice of uniformization ofMan = [H/Γ], and let µ be the cusp width of i∞. Then Pµ = 〈
[

1 µ
0 1

]
〉 ⊂

Γ, and we may further refine the uniformization diagram (8) as:

H/Pµ [H/Γ] Man

H H/P1 [H/SL2(Z)] M(1)an

∼

p

∼

ϕ

where the unmarked arrows are the canonical projections. The map H/P1 → [H/ SL2(Z)] → M(1)an is given
by the analytic Tate curve Tatean, and hence the composition H/Pµ →M(1)an is given by the analytic µ-sided
Tate curve Tatean

µ (c.f. §5.2.1). As in (8), the triangle on the left 2-commutes via the identity 2-isomorphism,
and hence this 2-commutative diagram determines a “analytic oriented cusp” ofMan.
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We now argue that this also determines an oriented cusp ofM, as follows. Let µ denote the cusp width of i∞
on [H/Γ]. Let Γ′ ⊂ Γ be a torsion-free finite index subgroup such that the cusp i∞ of H/Γ′ has the same width
µ. For example, we may take Γ′ := Γ ∩ Γ1(5). Let O(H/Pµ) denote the ring of holomorphic functions on H/Pµ
which is meromorphic at “i∞”, and let O(H/Γ′) (resp. O(M(1)an)) be the ring of holomorphic functions on
H/Γ′ (resp. M(1)an = H/ SL2(Z)) which are meromorphic at all cusps. Then, we have diagrams

H/Γ′

Man

H/Pµ M(1)an

M(1)an

ϕ
whence a diagram

O(H/Γ′)

O(H/Pµ)

O(M(1)an) = C[j]

where the map H/Γ′ → Man is the composition H/Γ′ → [H/Γ] → Man, the “central triangle” on the left
2-commutes via ϕ, and all other triangles 1-commute (2-commute via the identity 2-isomorphism). Let t be
an isomorphism t : H/Pµ → D◦ ⊂ C sending “i∞” to “0”. Then, “expanding in t” defines a homomorphism
O(H/Pµ) → C((t)). There is a canonical choice of t, denoted by “q1/µ”, which sends Pµτ 7→ e2πiτ/µ ∈ D◦, and
for any choice of t, we have t = vq1/µ for some holomorphic function v : H/Pµ → C× whose q1/µ-expansion lies
in C[[q1/µ]]×. Since H/Γ′ and M(1)an are algebraic, we obtain a commutative diagram14

SpecO(H/Γ′)

M

SpecC((t)) M(1)

SpecC[j]

ϕ′
(11)

where the map SpecC((t)) →M(1) is the µ-sided Tate curve in the uniformizer t, and the 2-isomorphism ϕ′ is
the “algebraization” of ϕ, which exists because the commutativity of the outer triangle imply that the source and
target of ϕ are both twists of the µ-sided Tate curve over H/Pµ, and two such twists are analytically isomorphic if
and only if they are algebraically isomorphic viewed as elliptic curves over C((t)). Thus, from the uniformization
u : H →Man, we have defined an oriented cusp ofM.

Definition 5.3.3. Given a choice of uniformization ofMan = [H/Γ] (given by the data u : H →Man and the
2-isomorphism ϕ), let µ be the cusp width of i∞. Then, the associated oriented cusp “i∞” is by definition the
2-commutative triangle

M

SpecC((q1/µ)) M(1)
ϕ′

coming from in (11), where we have chosen t := q1/µ to be the function H/Pµ
∼−→ D◦ given by Pµτ 7→ e2πiτ/µ.

14As usual, all triangles without indicated 2-isomorphisms actually 1-commute.
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6 Equivalence between Katz and classical modular forms

6.1 Katz modular forms
Let S be a noetherian scheme, and let M(1) be the moduli stack of elliptic curves over S. Let M(1) be the
moduli stack of stable (1,1)-curves (ie, stable 1-pointed curves of genus 1, c.f. [Knu83] §1). Then M(1) is a
smooth proper DM stack containingM(1) as an open substack. Let ωM(1)

be the functor which to any stable
(1,1)-curve q : E → T associates the group Γ(T, q∗ωq), where ωq is the dualizing sheaf of q.

If q is smooth, then ωq = Ω1
E/T . If T = SpecC and E → T is a nodal cubic, then ωq can be identified with

the subsheaf of the sheaf of meromorphic differentials on the normalization of E consisting of those which are
holomorphic away from the preimages of the node, having at worst logarithmic poles at those preimages, and
such that the residues at the preimages sum to 0 (c.f. [Man99], §V.1.1).

The sheaves q∗ωq are invertible OT -modules and commute with arbitrary base change ([DR75] §II, Proposition
1.6). Thus, ωM(1)

defines an invertible sheaf on M(1), called the Hodge bundle. In particular, it is a coherent
sheaf.

Let ωM(1)
an be defined in exactly the same way. That is, for any T ∈ An and analytic family of stable (1,1)-

curves q : E → T , ωM(1)
an associates to E → T the group Γ(T, q∗ωq). Let ωM(1)an be the restriction of ωM(1)

an

to the open substackM(1)an ⊂M(1)
an
.

Definition 6.1.1. Let p :M→M(1) be a finite etale morphism (still working over S). SupposeM is an open
substack of a smooth proper DM stack M, and that p extends to a map between compactifications which we
also call p : M→M(1). A (weakly holomorphic) Katz modular form for M of weight k is a global section of
ω⊗kM := p∗ω⊗kM(1). A holomorphic Katz modular form forM of weight k is a global section of ω⊗kM := p∗ω⊗k

M(1)
.

By the description of pullbacks given in §2.1, for any morphism T →M, if the composition T →M →M(1)
corresponds to the stable curve q : E → T , then we have

ω⊗kM (T →M) = ω⊗k
M(1)

(T →M→M(1)) = Γ(T, q∗ωq)

Thus, the space of weakly holomorphic (resp. holomorphic) Katz modular forms forM (resp. M) of weight k is

H0(M, ω⊗kM ) (resp. H0(M, ω⊗kM ))

If S = SpecC, the formation of the Hodge bundle commutes with analytification15. That is,

(ωM)an = ωMan

Similarly, let ωMan := (pan)∗ωM(1)an and ωMan := (pan)∗ωM(1)
an .

6.2 Classical modular forms
Let Γ ≤ SL2(Z) be a finite index subgroup. Let H denote the upper half plane.

Definition 6.2.1. A classical (weakly holomorphic) modular form for Γ of weight k is a holomorphic function
f : H → C satisfying

1. f is modular of weight k for Γ. That is, for all γ =
[
a b
c d

]
∈ Γ, we have f(γτ) = (cτ +d)kf(τ) for all τ ∈ H.

2. f is meromorphic at the cusps.

If f is moreover holomorphic at the cusps, then we call f a holomorphic modular form. A modular form of
weight k = 0 is called a modular function. The space of weakly holomorphic (resp. holomorphic) modular forms
for Γ of weight k is denoted

Mk(Γ) (resp.Mhol
k (Γ))

15This is because elliptic curves are proper, and hence all analytic sections of the dualizing sheaf are algebraic.
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Note that since Γ is finite index inside SL2(Z), for some integer µ, we must have
[

1 µ
0 1

]
∈ Γ. The smallest positive

integer µ satisfying this property is called the cusp width of i∞ relative to Γ. By property (1), we have:

f(τ + µ) = f(τ) for all τ ∈ H

In particular, f is µ-periodic, and hence has a Fourier expansion as a Laurent series in q1/µ := e2πi/µ.

6.3 From Katz to classical
In this section we return to setting S = SpecC.

Associated to the family E/H, we also have the Hodge bundle ωH on H, which for every T ∈ An and every
map T → H we associate the global holomorphic differentials on ET . Since H is contractible, this bundle is
trivial, and is specifically trivialized by the section “dz” which to every τ ∈ H associates the differential dz on
Eτ = C/Λτ . Similarly, dz⊗k is a nowhere vanishing section of ω⊗kH .

Let pt ∈ An denote the 1-point space (with structure sheaf the constant sheaf C)

Let p : M → M(1) be a finite etale morphism of connected DM stacks, extending to a map p : M → M(1)
of smooth proper stacks. Let G be a (weakly holomorphic) Katz modular form for M of weight k - that is, a
global section of ω⊗kM .

As in §5.3, let us choose a uniformization (e.g., a diagram as in (7)), consisting of a morphism u : H → Man

and a 2-isomorphism ϕ witnessing the 2-commutativity of the diagram. As in (8), u factors uniquely through
an equivalence [H/Γ] ∼=Man, which determines a finite index subgroup Γ ≤ SL2(Z).

For any τ ∈ H, u(τ) gives us an object ofMan(pt) whose image p(u(τ)) inM(1)an(pt) is an elliptic curve, which
via ϕ is equipped with an isomorphism

ϕτ : Eτ
∼−→ p(u(τ))

We may evaluate Gan at u(τ) to obtain a k-fold differential on p(u(τ)), and the pullback ϕ∗τGan(u(τ)) must be
λτ (2πidz)⊗k for some λτ ∈ C. We define the classical modular form fG associated to G as:

fG : H → C fG(τ) := λτ (12)

In other words, we have fG(τ) = ϕ∗τG
an(u(τ))/(2πidz)⊗k.

Proposition 6.3.1. The function fG defined above is holomorphic (on H) and is weight k modular for Γ.

Proof. First we show that it is holomorphic on H. The algebraic section G defines an analytic section Gan of
(ω⊗kM )an = ω⊗kMan , which gives a nowhere vanishing differential Gan(u(H)) of the elliptic curve p(u(H)) over H,
and our choice of uniformization gives an isomorphism of elliptic curves over H

ϕH : E ∼−→ p(u(H))

The function fG is just the quotient of ϕ∗HG
an(u(H)) and the nowhere vanishing holomorphic section (2πidz)⊗k

of the holomorphic vector bundle ωH, and hence is holomorphic (on H).

Next we show that fG behaves as expected under Γ. Suppose γ =
[
a b
c d

]
∈ Γ, then γ determines an isomorphism

γ̃τ

γ̃τ : Eτ → Eγτ γ(z + Λτ ) =
1

cτ + d
z + Λγτ

Let u(γτ ) denote the image of the isomorphism γτ : τ → γτ in [H/Γ] under the equivalence [H/Γ]
∼−→ Man.

The fact that Gan is a global section of ωMan then implies (c.f. Example 3.3.1) that

Gan(u(τ)) = u(γτ )∗Gan(u(γτ)) = p(u(γτ ))∗Gan(u(γτ))

where on the right side of the second equality we are viewing Gan(u(γτ)) as a differential on the elliptic curve
p(u(γτ)). The fact that ϕ witnesses the 2-commutativity of the diagram (7) implies that we have a commutative
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diagram
Eτ p(u(τ))

Eγτ p(u(γτ))

γ̃

ϕτ

p(u(γτ ))

ϕγτ

From this, we get:

fG(τ)(2πidz|Eτ )⊗k = ϕ∗τG
an(u(τ)) = ϕ∗τp(u(γτ ))∗Gan(u(γτ)) = γ̃∗ϕ∗γτG

an(u(γτ))

Applying (γ̃−1)∗ to both sides yields

(γ̃−1)∗fG(τ)(2πidz|Eτ )⊗k = (cτ + d)kfG(τ)(2πidz|Eγτ )⊗k = ϕ∗γτG
an(u(γτ))

but the last equality gives us precisely that fG(γτ) = (cτ + d)kfG(τ), as desired.

We wish to show that fG is meromorphic at the cusps. For this, it suffices to show that its q-expansion at i∞
lies in C((q1/µ)). This is a consequence of the fact that we can recover q-expansions algebraically by evaluating
at oriented cusps (c.f. 5.3):

Proposition 6.3.2. LetM→M(1) be finite etale and G a global section of ω⊗kM . Let us choose a uniformization
of Man = [H/Γ]. By 5.3.3, this choice of uniformization defines an oriented cusp “((i∞), ϕ)” of M - ie, a
diagram

M

SpecC((q1/µ)) M(1)
Tate(q)

(i∞)

ϕ

Let µ denote the cusp width of (i∞). Let q-exp(fG) denote the q1/µ = e2πiτ/µ-expansion of the holomorphic
function fG : H → C. Then, q-exp(fG) is given by the formula

ϕ∗G((i∞)) = q-exp(fG)ω⊗kcan (13)

in the 1-dimensional C((q1/µ))-vector space Γ(Tate(q),Ω1
Tate(q)/C((q1/µ))

). In particular, q-exp(fG) is a finite-tailed
Laurent series, hence is meromorphic at i∞. Let d := [SL2(Z) : Γ]. Let {γi}i=1,...,d be representatives of the
cosets SL2(Z)/Γ, and let µi be the cusp width of γi(i∞). Then M has d-oriented cusps, and the formulas (13)
associated to each oriented cusp gives the expansions of f in e2πiγ−1

i τ/µi (a uniformizer at γ(i∞)) for i = 1, . . . , d.

Proof. The statement up through (13) follows from the definition of fG and the construction of the oriented
cusp “i∞” in 5.3.3 associated to our choice of uniformization. The second statement about q-expansions at other
cusps is straightforward to check.

Remark 6.3.3. Since the passage from Katz to classical involves evaluating the global section G of ω⊗kM on
individual elliptic curves over C, one might wonder why the Tate curve over C((q1/µ)) plays such a distinguished
role as compared to its twist, since they define analytic families which are fiberwise isomorphic. In this setting
the distinguishing characteristic of the Tate curve is its access to the differential ωcan, which coincides with the
differential 2πidz ∈ Ω1

E/H on all of H. Any choice of a holomorphic differential on the twist of the Tate curve
over C((q1/µ)) will only agree with 2πidz on “alternating” vertical strips in H of width µ. On the other strips it
will correspond to −2πidz.

6.4 From classical to Katz
Let f : H → C be a holomorphic modular form for a finite index subgroup Γ ≤ SL2(Z). That is to say, f
satisfies the conditions of 6.2.1 and is moreover holomorphic at all cusps. Assume that there is a morphism
of connected smooth proper (algebraic) DM stacks p : M → M(1) such that the restriction of p to the open
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substackM(1) gives a (representable) finite etale morphismM→M(1) whose analytification can be identified
with [H/Γ]→ [H/SL2(Z)] as in §5.3.

It follows from the results of [BR11] that such compactifications M always exist, though in general the map
p :M→M(1) will not be representable.

We wish to construct, using f , a global section Gf of ω⊗kM := p∗ω⊗k
M(1)

. The first step is to construct an analytic

section Gan
f of ω⊗kMan .

Let q : E → H be the “universal framed elliptic curve over H” as before. Note that f(τ)dz⊗k is a holomorphic
section of ω⊗kH = q∗(Ω

1
E/H)⊗k. More precisely, to every point τ ∈ H, f associates the k-fold holomorphic

differential f(τ)(2πidz)⊗k on Eτ . In order to show that the same rule defines a section of ω⊗k[H/Γ], we must check
that for every τ ∈ H and γ ∈ Γ inducing the isomorphism

γ : Eτ → Eγτ γ(z + Λτ ) =
1

cτ + d
z + Λγτ

we have γ∗f(γτ)(2πidz)⊗k = f(τ)(2πidz)⊗k. Indeed, by the modular property of f , we have:

γ∗f(γτ)(2πidz)⊗k = f(γτ)γ∗(2πidz)⊗k = f(γτ)(cτ + d)−k(2πidz)⊗k = f(τ)(2πidz)⊗k

Thus, we will define:
Gan
f (Eτ ) := f(τ)(2πidz)⊗k τ ∈ H

Now we wish to show that the section Gan
f (Eτ ) := f(τ)(2πidz)⊗k for τ ∈ H extends to the cusps. It will suffice

to make the argument for the cusp i∞, as the procedure for other cusps is the same.

Since M is assumed Deligne-Mumford, the cusp i∞ of Man
admits an etale neighborhood V → Man

with
V ∈ An. Since M is separated, by shrinking V , we may assume that there is a unique point v0 ∈ V whose
image inM(1)

an
corresponds to a singular curve. Let V ◦ := V −{v0}. By the discussion in §5.2, the Tate curve

defines an analytic family Tatean of stable (1,1) curves over the open unit disk D ⊂ C whose only singular fiber
lies at 0 ∈ D. Thus, Tatean /D defines an etale morphism D →M(1) sending 0 7→ i∞ (c.f. 5.2.5). By possibly
replacing V with V ×M(1)

an D, we may moreover assume that we have a commutative diagram16

V Man

D M(1)
an

p|V

ét

p

Tatean

(14)

Because Man
is smooth, V is smooth, and hence by further shrinking V around v0, we may assume that V is

biholomorphic to a connected open subset of C. Since v0 ∈ V is the only point corresponding to a singular curve,
the map V → D is nonconstant, hence open, and hence by replacing V with a subset V ′ ⊂ V , and replacing D
with D′ ⊂ D, we may assume that p|V ′ : V ′ → D′ is a surjection between open disks of positive radius with finite
fibers. SinceMan →M(1)an is etale, the restriction of p|V ′ to V ′◦ gives an etale morphism V ′◦ → D′◦, which
being a connected unramified cover of an open punctured disk, must be given by z 7→ zn for some n ≥ 1. Thus,
if q is a parameter on D′◦, then q1/n is a parameter on V ′◦ and the map V ′◦ → U ′◦ →M(1)

an
corresponds to

the pullback Tatean |V ′◦ of Tatean to V ′◦. Thus Tatean |V ′◦ is a restriction of the n-sided Tate curve Tatean
n to a

small punctured disk. By 5.2.2, this implies that [ 1 n
0 1 ] ∈ Γ. In particular, f must be n-periodic. Similarly, the

map V ′ → U ′ →M(1)
an

is given by Tatean
n |V ′ , which is a stable family of (1, 1)-curves over V ′, and the same

computation as in 5.2.4 shows that ωcan extends to give a global section of the dualizing sheaf for this family.

Since f is n-periodic and holomorphic at i∞, it lifts to a holomorphic function on the disk V ′ with parameter
q1/n. Thus, at v ∈ V ′ we can define a section Gan

f of ω⊗kMan by

Gan
f (Tatean

n |q1/n=v) := (2πi)−kf(v)ω⊗kcan

16We cannot assume that this is a pullback diagram, since in general p may not be a representable morphism.
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By the formulas in §5.2, this agrees with our definition Gan
f (Eτ ) for τ ∈ H and hence doing this for every cusp,

we have constructed a global analytic section Gan
f of ω⊗kMan , which defines a morphism

Gan
f : OMan −→ ω⊗kMan

Since M is proper, by GAGA (c.f. §4.2), analytification induces an equivalence of categories an : Coh(M) ∼=
Coh(Man

), and hence the morphism Gan
f above corresponds to a morphism

Gf : OM → ω⊗kM

which is the desired global section of ω⊗kM .

6.5 The equivalence
Definition 6.5.1. For a subgroup Γ ≤ SL2(Z), let Mk(Γ) denote the C-vector space of weakly holomorphic
modular forms of weight k for Γ, and Mhol

k (Γ) its subspace of holomorphic forms.

We have essentially proven the following result:

Theorem 6.5.2. Let p : M → M(1) be a finite etale morphism (all taken over C), with M connected. Let
M be a smooth compactification of M which is Deligne-Mumford, and such that p extends to a morphism
p : M → M(1). Choose a uniformization Man ∼= [H/Γ] as in §5.3. Then, we have an isomorphism of vector
spaces (depending on our choice of uniformization)

H0(M, ω⊗kM ) ∼= Mk(Γ)

restricting to an isomorphism
H0(M, ω⊗kM ) ∼= Mhol

k (Γ)

given by the mutually inverse maps G 7→ fG for G ∈ H0(M, ω⊗kM ) and f 7→ Gf for f ∈ Mk(Γ) as described in
§6.3 and §6.4.

Proof. The fact that f 7→ Gf and G 7→ fG are mutually inverse is essentially clear from definition. The discussion
above certainly proves the second isomorphism. To prove the first, we can use the same argument, but using
dualizing sheaves with bounded poles at the cusps ω⊗kM (D) for an appropriate choice of cuspidal divisor D. These
are coherent, and so the same GAGA argument applies. We omit the details.

7 Arithmetic considerations

7.1 Base change and the q-expansion principle
The main result 7.1.4 is analogous to the classical q-expansion principle (c.f. Katz [Kat73] §1.6). However, unlike
in Katz [Kat73], which restricted to the case of proper modular schemes and used Grothendieck’s comparison
theorem for formal schemes (which only holds in the proper setting), here we obtain a slightly more general result
by adapting an argument of Brian Conrad in his lecture notes the algebraic theory of q-expansions to apparently
remove the properness assumption. This seems useful for giving an analytic description of arithmetic models for
stacks finite etale overM(1) over some Dedekind ring O (c.f. 7.3.2).

In this section by default we work over S = SpecO where O is a Noetherian ring.

Let M(1) (resp. M(1)) be the moduli stack of elliptic curves (stable (1,1)-curves) over O. Suppose we have
a finite etale morphism of DM stacks p : M → M(1) over O, then we have a notion of a meromorphic Katz
modular form over O - that is, an element of the O-module H0(M, ω⊗kM ) := H0(M, p∗ω⊗k).

Theorem 7.1.1 (Flat base change). Let B be a flat O-algebra. There is a canonical isomorphism

H0(MB , ω
⊗k
MB

) ∼= H0(M, ω⊗kM )⊗O B
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Proof. The point is that global sections can be computed as a kernel (c.f. §3.3), and flat base change preserves
kernels. Specifically, let U →M be a etale covering ofM, then UB →MB is also an etale covering. Since B is
O-flat, we have a commutative diagram with exact rows (exactness follows from §3.3)

0 H0(M, ω⊗kM ) ω⊗kM (U) ω⊗kM (U ×X U)

0 H0(M, ω⊗kM )⊗O B ω⊗kM (U)⊗O B ω⊗kM (U ×X U)⊗O B

Since U , UB , U ×X U and (U ×X U)B = UB ×XB UB are schemes, and the restriction of ω⊗kM to a scheme is an
ordinary quasicoherent sheaf (§3.2), by the usual flat base change for quasicoherent sheaves on schemes, we find
that the last two entries of the bottom row are just ω⊗kMB

(UB)→ ω⊗kMB
(UB×XB UB). The exactness then implies

our desired isomorphism.

Corollary 7.1.2. Given a flat morphism η : SpecC → SpecO, if M is geometrically connected, then let us
choose a uniformizationMan

C
∼= [H/Γ] as in §5.3. Then, we have an isomorphism

Mk(Γ) ∼= H0(MC, ω
⊗k
MC

) ∼= H0(M, ω⊗kM )⊗O C

Proof. Follows directly from 6.5.2 and 7.1.1.

Due to this equivalence, from now on we will write Katz modular forms also using the letter “f ”.

Given an elliptic curve E over an S-scheme T corresponding to a morphism E/T : T →M(1), the pullback

M(E/T ) :=M×M(1) T M

T M(1)

p

E/T

(15)

is finite etale over T , and is called the “scheme of abstract M-level structures on E/T ”. The sections of
M(E/T ) → T are called “(abstract) M-level structures on E/T ” and any such section determines a mor-
phism T →M lifting E/T : T →M(1) via p. If E is the Tate curve defined over some Z((q)) ⊗Z O-algebra Ω,
then we will sometimes call anM-level structure on Tate(q)/Ω an oriented cusp ofM with values in Ω.

Now let K be any O-module, and F a quasi-coherent sheaf onM. Let K⊗OF denote the sheaf onM associated
to the presheaf of OM-modules defined by the rule:

(U →M) 7→ K ⊗O F(U →M) (16)

If U is an affine scheme, then the restriction to U → M of the presheaf given by (16) defines a quasicoherent
sheaf on U . Since restriction commutes with sheafification ([Sta16] 00WY), this implies that (K ⊗O F)(U →
M) = K ⊗O F(U →M) for any morphism U →M with U an affine scheme.

Definition 7.1.3 (q-expansion). Let K be any O-module. Let Ω be a Z((q)) ⊗Z O-algebra, and let α be an
M-level structure on Tate(q)/Ω. From the above discussion, setting F = ω⊗kM and U = Spec Ω with map
Spec Ω→M given by (Tate(q)/Ω, α), we get a map

H0(M,K ⊗O ω⊗kM )→ H0(Spec Ω,K ⊗O ω⊗kTate(q)/Ω) = K ⊗O H0(Spec Ω, ω⊗kTate(q)/Ω)

and hence by taking quotients with the canonical differential ω⊗kcan on Tate(q)/Ω, we obtain a map

H0(M,K ⊗O ω⊗kM )→ K ⊗O Ω (17)

which is called “taking q-expansions at the oriented cusp (Tate(q)/Ω, α)”.
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Theorem 7.1.4. Let O be a Dedekind domain with p ∈ O× for some prime p. LetM a connected17 stack finite
etale overM(1) :=M(1)O, and Ω an O-flat Z((q))⊗Z O-algebra satisfying:

(?) The map Spec Ω −→M(1)O = SpecO[j] given by the Tate curve is dominant when restricted to every fiber
over O.

Suppose there exists anM-level structure α on Tate(q)/Ω, then the associated q-expansion map (17) is injective
for any O-module K.18 For examples of Ω satisfying (?), see 7.1.7.

Proof. Let n := p2. By taking a connected component of the fiber product over M(1) with the Γ1(n)-moduli
stack,M admits a finite etale cover by an irreducible representable stackM′. Since there exists a Γ1(n)-structure
over Z((q1/n)), we have a commutative diagram

H0(M′,K ⊗ ω⊗kM′) K ⊗O Ω[q1/n]

H0(M,K ⊗ ω⊗k) K ⊗O Ω

where the top horizontal map is given by the product of the Γ1(n)-structure and α. Furthermore, the left vertical
map is injective sinceM′ →M is a covering in the etale topology. Note that Ω[q1/n] := Ω[x]/(xn−q) is faithfully
flat over Ω, and hence it also satisfies (?). Thus, to prove the injectivity of the bottom horizontal map, it suffices
to prove that of the top horizontal map, and hence we may assumeM an integral affine scheme, smooth over O.

Writing K as the filtered colimit of its finitely generated submodules, since colimits of injective maps are injective
and cohomology on quasicompact quasiseparated schemes commutes with filtered colimits ([Sta16] 01FF), we
may assume that K is O-finite.

If 0→ K ′ → K → K ′′ → 0 is an exact sequence of O-modules, then tensoring with the flat O-module ω⊗k and
taking global sections on the top row, and tensoring with the O-flat Ω on the bottom row yields a commutative
diagram with exact rows

0 H0(M,K ′ ⊗O ω⊗k) H0(M,K ⊗O ω⊗k) H0(M,K ′′ ⊗O ω⊗k)

0 K ′ ⊗O Ω K ⊗O Ω K ′′ ⊗O Ω 0

where the vertical maps are given by q-expansion. A diagram chase shows that the result for K ′ and K ′′ implies
the result for K, and hence by considering the sequence 0→ Ktors → K → K/Ktors → 0, we may assume that K
is either torsion or torsion-free. In the torsion-free case, since ω⊗k is O-flat, by [Sta16] 0AUU, we may choose an
injection K ↪→ O⊕r, which induces an injection on global sections H0(M,K ⊗O ω⊗k) ↪→ H0(M,O⊕r ⊗O ω⊗k),
and hence the torsion-free case is first reduced to the case K = O, and using the flat injection O ↪→ FracO,
then reduced to the case K = FracO. In the torsion case, since K is finite over the Noetherian O, Ktors is also
O-finite, so AnnO(K) is a nonzero ideal, and hence K is finite over the Artinian ring O/AnnO(K), so K is itself
Artinian, and hence has a (finite) composition series19. Thus, examining the simple composition factors, we are
reduced to the case K ∼= O/m (as O-modules) for some maximal ideal m of O.

Since the ring structure on K is irrelevant, we are reduced to treating the case where K is a field, either FracO or
O/m for some maximal ideal m. In this case, letMK denote the base change ofM by the map SpecK → SpecO.
Since the base change map is affine, we have

H0(M,K ⊗O ω⊗k) = H0(MK , ω
⊗k
MK

)

17note that we do not require that M be geometrically connected, though I’m not sure what this buys us.
18If a connected component of a geometric fiber of M is a nontrivial finite etale cover of the corresponding geometric fiber of

M(1), then the condition that there exists a prime p ∈ O× should be superfluous. Indeed, I believe for any Dedekind domain O
having all primes as residue characteristics, it should be the case that π1(M(1)O) = π1(SpecO), though I don’t currently have a
proof.

19This seems to be the only case where the Dedekind hypothesis on O is relevant (without it, O/AnnO(K) may not be Artinian,
and hence might not have a finite composition series. I wonder if the theorem is true when O is only assumed a Noetherian domain.
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Since the mapM→M(1)O is faithfully flat, by property (?), the image of the Tate curve map SpecK ⊗O Ω→
MK contains the generic point of MK . Thus, if a global section f ∈ H0(MK , ω

⊗k
MK

) were to have vanishing
q-expansion, it must vanish on a dense open subset of MK . Since ω⊗kMK

is invertible over the integral affine
schemeMK , its global sections inject into the stalk over the generic point, hence f must be the zero section.

Corollary 7.1.5 (q-expansion principle). Under the hypotheses of 7.1.4, let K be an O-module, L ⊂ K a
submodule. Let f ∈ H0(M,K⊗ω⊗k) be such that its q-expansion lies in the submodule L⊗O Ω ⊂ K⊗O Ω, then
f comes from an element of H0(M, L⊗ ω⊗k).

Proof. The exact sequence 0→ L→ K → K/L→ 0 of O-modules gives an exact sequence of sheaves

0→ L⊗ ω⊗k → K ⊗ ω⊗k → (K/L)⊗ ω⊗k → 0

and hence a exact sequence of cohomology

0→ H0(M, L⊗ ω⊗k)→ H0(M,K ⊗ ω⊗k)→ H0(M, (K/L)⊗ ω⊗k)

Applying 7.1.4 to the image of f in H0(M, (K/L)⊗ ω⊗k), we find that the image is 0, and hence f comes from
H0(M, L⊗ ω⊗k).

Lemma 7.1.6. For any ring A, the map Z((q))⊗Z A→ A((q)) is injective.

Proof. This follows from Lemma 2.6 in Conrad’s notes Algebraic theory of q-expansions.

I don’t have a useful classification of the Z((q))⊗Z O-algebras Ω which satisfy property (?) of 7.1.4, though the
property seems to be satisfied by all rings one might consider in practice. For example, we have:

Proposition 7.1.7. Let O be a Dedekind domain, then a Z((q))⊗ZO-algebra Ω will satisfy condition (?) of 7.1.4
in the following cases:

(1) Ω = O((q))

(2) Ω = O′((q)) for any finite flat extension O′ of O.

(3) If Ω′ satisfies (?), then for any morphism of Z((q)) ⊗Z O-algebras Ω → Ω′, Ω will also satisfy (?) (for
example, if Ω ⊂ Ω′ is a subalgebra).

(4) If Ω′ satisfies (?), and we have an injection of Z((q)) ⊗Z O-algebras Ω′ ⊂ Ω with the O-module quotient
Ω/Ω′ torsion-free (equivalently, flat), then Ω will satisfy (?).

Proof. The morphism in (?) is given by the homomorphism of O-algebras

O[j]→ Z((q))⊗Z O → Ω

where the first map sends j to its q-expansion j(q) = q−1 +744+O(q) (and is clearly injective). We wish to show
that the composition remains injective upon tensoring with K where K = FracO or K = O/m for any maximal
ideal m of O. In case (1), where Ω = O((q)), for K = FracO, then the injectivity follows from the O-flatness of
K and the injectivity of Z((q)) ⊗Z O → O((q)) (7.1.6). Thus, let K = O/m. In this case, since O/m is O-finite,
O((q))⊗O (O/m) = (O/m)((q)), so we must demonstrate the injectivity of the map

(O/m)[j]→ (O/m)((q))

Indeed, if cnjn + · · · + c1j + c0 ∈ (O/m)[j] is a nonzero polynomial of minimium degree with zero image in
(O/m)((q)), then we may assume cn 6= 0 ∈ (O/m). But then its image looks like cnq−n + O(q−n+1), which can
only be 0 if cn = 0, a contradiction.

In case (2), we wish to demonstrate that the composition

O[j]→ O((q))→ O′((q))
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remains injective after applying ⊗O(O/m). We have already demonstrated this for the first map, so we wish
to show that O((q)) ⊗O (O/m) → O′((q)) ⊗O (O/m) is always injective. For this, it suffices to show that
TorO1 (∗,O′((q))/O((q))) = 0, or equivalently that theO-module quotientO′((q))/O((q)) is flat (equivalently torsion-
free). To demonstrate torsion-freeness, it suffices to show that if x ∈ O′ and a ∈ O such that ax ∈ O, then
x ∈ O. In this case, let L := FracO, then we have a commutative diagram with all morphisms injective

O′ ⊗O L O′

L O

Since ax ∈ O, this implies that a−1ax = x ∈ L, but since x ∈ O′, x is integral over O, but O is integrally closed,
so this implies that x ∈ O. This proves (2), and the exact same argument establishes (4).

For (3), if O[j]→ Ω→ Ω′ is injective on all fibers over O, then certainly the same must be true of O[j]→ Ω.

7.2 Bounded denominators
Remark 7.2.1. In order to connect the notions of analytic q-expansions of modular forms, and arithmetic q-
expansions at level structures on Tate(q)/Ω, one must base change to C. The resulting statement one gets might
look somewhat strange. We consider some examples.

Example 7.2.2. Under the hypotheses of 7.1.4, suppose furthermore that O ⊂ C is a subring,MC is connected,
and that there is a map h : Ω → C((q1/n)) of Z((q)) ⊗Z O-algebras for some integer n ≥ 1. Then, we get a
commutative diagram with the middle square cartesian:

SpecC((q1/n)) SpecC⊗O Ω MC

Spec Ω M
Spec(h)

(Tate(q)/C⊗Ω,α)

(Tate(q)/Ω,α)

(18)

The first map on the top row is given by the Z((q)) ⊗Z O-algebra map h : Ω → C((q1/n)) and the canonical
inclusion C ↪→ C((q1/n)), and by commutativity, the composite of the top row is given by (Tate(q)/C((q1/n)), α).
If Man

C
∼= [H/Γ], then the process of q-expansion (c.f. 7.1.3) by pulling back an element of H0(MC, ω

⊗k
MC

) =

H0(M,C⊗Oω⊗kM ) and dividing by ωcan actually gives you a q-expansion defined analytically of the corresponding
element of Mk(Γ). As a consequence, noting that C⊗O Ω consists of finite C-linear combinations of elements of
Ω, we can sometimes obtain nontrivial statements about the Fourier expansions of weakly holomorphic modular
forms (c.f. 7.2.4).

Note that if M is connected, but not geometrically connected (ie MC is not connected), then by 7.1.4, the
q-expansion map H0(MC, ω

⊗k
MC

) → C ⊗O Ω associated to the map SpecC ⊗O Ω → MC will still be injective,
but its composition with C⊗O Ω→ C((q1/n)) will not be injective. Indeed, supposing for simplicity that O ⊂ C
is a subfield, let M be the coarse scheme of M, then since the map Spec Ω → M → M is assumed to contain
the generic point, since M is not geometrically connected, by [Sta16] 04KV, it must be the case that O is not
algebraically closed in Frac Ω. This implies that C⊗OΩ will be a product of extensions of Ω, and the q-expansion
map induced by SpecC ⊗O Ω → MC will actually be the product of the q-expansion maps at a cusp on each
component of MC. Its composition with C ⊗O Ω → C((q1/n)) will correspond to the q-expansion map at a
particular cusp, corresponding to the choice of the Z((q))⊗Z O-algebra morphism h : Ω→ C((q1/n)).

Lemma 7.2.3. Let O ⊂ Q be a subring. Then we have an equality of subrings of C((q)):(
O((q))⊗O C

)
∩Q((q)) = O((q))⊗O Q

Proof. It’s clear that the right side is contained in the left side. Let L be either Q or C. Given f =
∑
i biq

i ∈
Q((q)), f is in O((q)) ⊗O L if and only if there exist finitely many c1, . . . , cn ∈ L and gj =

∑
i ajiq

i ∈ O((q)) for
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j ∈ {1, . . . , n} such that f =
∑n
j=1 cjgj , or equivalently such that bi =

∑n
j=1 cjaji for all i ∈ Z. Given any

choice of gj ∈ O((q)), the existence of the cj ’s amounts to solving a system of linear equations in finitely many
variables, and hence if a solution exists in any extension of Q, it must exist in Q itself. This implies our desired
equality. Of course this all holds with Q,C replaced by any extension of fields containing O.

Example 7.2.4. Let p be a rational prime, and A the localization of the ring of integers of some number field
at a prime lying over p. LetM→M(1)A be a finite etale morphism withMC connected withMan

C
∼= [H/Γ].

From (15), the scheme of M-level structures over Tate(q)/A((q)) is finite etale over SpecA((q)), and hence by
Corollary 5.4.3 of [?Chen17] it becomes completely decomposed over O((q1/e)), where O is finite etale over A
and e is coprime to p. In particular, p is not invertible in O. Base changing M → M(1)A to O, choosing an
embedding O ⊂ C, and setting Ω := O((q1/e)) with the natural map to C((q1/e)), we find that the scheme ofM-
level structures over Tate(q)/Ω is completely decomposed. Thus, from 7.2.2, we find that all Fourier expansions
(ie, at all cusps) of all weakly holomorphic modular forms for Γ lie in C⊗O O((q1/e)). It follows from the lemma
that every modular form with algebraic Fourier coefficients must have Fourier expansions in O((q1/e)) ⊗O Q.
That is to say, they have bounded denominators at p.

Theorem 7.2.5 (Bounded denominators). Let B ⊂ Q be a subring, letM→M(1)B be finite etale morphism.
Suppose MC is connected with analytification isomorphic to [H/Γ]. Suppose p is not invertible in B, then any
modular form f ∈Mk(Γ) with algebraic Fourier coefficients has bounded denominators at p.

Proof. By considering a presentation ofM, we find that the mapM→M(1)B is the base change of a finite etale
morphismMA →M(1)A via a map SpecB → SpecA with A a finite type Z-algebra with p not invertible. Then,
localizing at a prime lying over p, we are reduced to the situation of 7.2.4, which gives us bounded denominators
at p.

7.3 Arithmetic models
Situation 7.3.1. Let O ⊂ C be a Dedekind subring such that there is a prime p ∈ O×. LetM→M(1)O be finite
etale with MC connected. Choose a uniformization Man

C
∼= [H/Γ] as in §5.3. Suppose there exists an M-level

structure α on Tate(q)/O((q1/n)), and choose an embedding of Z((q))⊗ZO-algebras O((q1/n)) ↪→ C((q1/n)). Then
taking q-expansions at (Tate(q)/O((q1/n)), α), we obtain a q-expansion map

H0(MC, ω
⊗k
MC

) = H0(M,C⊗O ω⊗k) −→ C⊗O O((q1/n)) ⊂ C((q1/n))

From the discussion in 7.2.2, the composition of this map with the isomorphism Mk(Γ) ∼= H0(MC, ω
⊗k
MC

) coming
from our choice of uniformization is given by Fourier expansion at some cusp. By changing our choice of
uniformization (which may involve changing Γ), we may assume that the resulting map Mk(Γ) → C((q1/n))
is given by taking expansions in the uniformizer e2πiτ/n (ie, q-expansion at i∞). On the other hand, by the
q-expansion principle, we find that H0(M, ω⊗k) is identified with the submodule of H0(M,C⊗O ω⊗k) ∼= Mk(Γ)
whose Fourier expansions lie in the subring O((q1/n)) ⊂ C((q1/n)). In particular, this implies:

Theorem 7.3.2 (Arithmetic models). In situation 7.3.1, taking k = 0, let M0(Γ,O) denote the ring of modular
functions for Γ whose e2πiτ/n-expansions lie in O ⊂ C. Let M be the coarse moduli scheme of M, then M ∼=
SpecM0(Γ,O).

Proof. The discussion above proved thatH0(M,OM) ∼= M0(Γ,O). It remains to show thatM ∼= SpecH0(M,OM).
IfM is representable, thenM = M and the result is clear. In the general case, letM(p2) denote the fine moduli
scheme over O parametrizing elliptic curves with full level p2-structures. Then M(p2) → M(1) is finite etale
(since p ∈ O×) and G-Galois, where G = GL2(Z/p2Z). Then,M′ :=M(p2)×M(1)M is an affine scheme, and
the coarse scheme M can be identified with the quotient ofM′ by G in the category of schemes. Thus,

M = SpecH0(M′,OM′)G,

butM′ →M is a covering of the etale siteMét, and hence by the sheaf condition, we have

H0(M′,OM′)G = H0(M,OM)

which proves the result.
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8 Appendix - Abstract deformation theory
Classically the deformation theory of an object provides a local picture of the associated moduli stack of the
object. However, given an abstract stack which may or may not have a moduli interpretation, one can still
define an “abstract” deformation theory for the objects of the stack, using which one can then apply Artin
approximation to understand the relation between etale local rings and universal deformation rings of DM stacks
(c.f. 8.0.6), as well as their relation with the etale local rings of their coarse moduli schemes (c.f. 8.0.7). What
appears here are detailed statements of the relevant definitions and some results, with references to the stacks
project where the proofs may be found. Hopefully this is more readable than reading the stacks project directly,
where the relevant material is spread over 600+ pages.

LetM be an algebraic stack20 over a scheme S. That is, we have a functor p :M→ Sch/S such that

• p :M→ Sch/S is fibered in groupoids,

• p : M→ Sch/S is a stack : I.e., the isom functors are sheaves for the etale topology on Sch/S, and any
etale descent datum for objects of X is effective,

• p : M → Sch/S is algebraic: I.e., the diagonal ∆ : M →M×SM is representable by algebraic spaces,
and there is an S-scheme U , and a smooth surjective morphism U →M.

In the above, if U →M can moreover be chosen to be etale, thenM is called a Deligne-Mumford (DM) stack.
This is true if and only if the diagonal ∆ :M→M×SM is unramified.

Moreover, we will assume that

• S is locally Noetherian and p :M→ Sch/S is locally of finite type: Ie the scheme U can be chosen to be
locally of finite type over S.

Let k be a field, and i : Spec k → S a morphism of finite type. This amounts to saying that if s ∈ S is the image
of i, then i induces a finite extension of the residue field k ⊃ κ(s). Moreover, i factors through the inclusion of
an affine open Spec Λ ⊂ S such that induced map Λ → k is finite, making k into a Λ-algebra. The fact that S
is locally Noetherian forces Λ to be Noetherian. We now define the category CΛ = CΛ,k as follows [Sta16, 06GB]

• The objects of CΛ are pairs (A,ϕ) where A is an Artinian local Λ-algebra and ϕ : A/mA → k is an
isomorphism of Λ-algebras.

• A morphism (B,ψ)→ (A,ϕ) in CΛ is given by a local Λ-algebra homomorphism f : B → A such that if f
denotes the induced map of residue fields, then ϕ ◦ f = ψ.

One can check that CΛ is equivalent to the opposite of the category of factorizations Spec k → SpecA→ S of i
such that A is Artinian local and the induced map A→ k identifies k with the residue field of A.

Let x0 : Spec k →M be a morphism corresponding to an object of the fiber categoryM(Spec k → S), which we
also call x0. We define the category Fx0 := FM,k,x0 as follows [Sta16, 07T2]:

• Its objects are morphisms x0 → x inM where p(x) = SpecA with A an Artinian local ring and Spec k =
p(x0)→ p(x)→ S is a factorization of i : Spec k → S inducing an isomorphism A/mA

∼−→ k.

• A morphism (x0 → x)→ (x0 → x′) is a commutative diagram inM

x x′

x0

Note that the arrows are reversed in the definition of a morphism. There is a natural map, which we also call
p : Fx0

→ CΛ sending (x0 → x) 7→ A, where SpecA = p(x).
20see [Sta16] Tag 026O and [AV02] §2
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Theorem 8.0.1. The functor p : Fx0 → CΛ defined above is a “deformation category”.

Proof. A predeformation category over CΛ is by definition a category fibered in groupoids over CΛ such that the
fiber category over k is equivalent to a category with a single object and a single morphism [Sta16, 06GS]. Thus
p : Fx0

→ CΛ is visibly a predeformation category. A deformation category is a predeformation category which
satisfies the Rim-Schlessinger (RS) conditions [Sta16, 06J1]. By [Sta16, 07WU], if M is a category fibered in
groupoids satisfying (RS), then the predeformation category Fx0

is a deformation category. By [Sta16, 07WQ],
any algebraic stack over a locally Noetherian scheme S satisfies (RS).

Remark 8.0.2. For any A ∈ CΛ, in the classical situation the objects x0 → x of Fx0
(A) are just deformations of

x0 over A, and the automorphisms of x0 → x of Fx0(A) are precisely the automorphisms of x in M(A) which
restrict to the identity on x0. Namely, these are “infinitesimal automorphisms” [Sta16, 06JN].

Since Fx0
is cofibered in groupoids, the sets of isomorphism classes of objects in its fiber categories define a

functor21 Fx0 : CΛ → Sets sending A ∈ CΛ to the set of isomorphism classes π0(Fx0(A)). We wish to show that
this functor is pro-representable ifM is DM. For this, we use Schlessinger’s conditions:

Theorem 8.0.3. Fx0 is prorepresentable if and only if the following are satisfied

(a) Fx0
is a deformation functor (i.e. its associated category over CΛ is a deformation category)

(b) dimk TFx0
is finite, and

(c) γ : DerΛ(k, k)→ TFx0 is injective.

Moreover, condition (a) is equivalent to the condition:

(a’) For every morphism x′ → x in Fx0
lying over a surjection A′ → A in CΛ, the map AutA′(x

′) → AutA(x)
is surjective.

Proof. The criteria for prorepresentability is [Sta16, 06JM]. To see that (a) is equivalent to (a’), note that Fx0
is

visibly a predeformation functor, so it is a deformation functor if and only if it satisfies (RS). Various equivalent
conditions to Fx0 satisfying (RS) are given in [Sta16, 06J8], one of which is (a’).

Remark 8.0.4. In the classical case the condition (a’) amounts to saying that every automorphism of a deformation
extends to higher order extensions of the deformation.

Theorem 8.0.5. IfM is a Deligne-Mumford stack locally of finite type over a locally noetherian scheme S, and
assume the factorization Spec k → Λ discussed above induces a separable extension of residue fields, then Fx0 is
pro-representable.

Proof. We will verify the conditions (a’), (b), and (c) of Theorem 8.0.3. The separability assumption implies that
Ωk/Λ = 0, so (c) holds trivially, since DerΛ(k, k) = Homk(Ωk/Λ, k) = 0. Condition (b) is a consequence of M
being locally of finite type [Sta16, 07X1]. To check (a’) by Remark 8.0.2, it would suffice to check that AutA(x)
is trivial for every object x ∈ Fx0

(i.e., there are no infinitesimal automorphisms). SinceM is assumed Deligne-
Mumford, the diagonal ∆ :M→M×SM is unramified (in particular, formally unramified), so its inertia stack
is also formally unramified, which is precisely to say that there are no infinitesimal automorphisms.

Lemma 8.0.6. Let M be an algebraic stack locally of finite type over a locally Noetherian scheme S. Let k be
a field and x : Spec k →M be a morphism such that Spec k → S is finite type with image s ∈ S. There exists a
versal ring R toM at x. If OS,s is a G-ring22, then we may find an smooth morphism U →M with U a finite
type S-scheme, and a point u ∈ U with residue field k, such that

(1) Spec k → U →M coincides with the given morphism x,

(2) there is an isomorphism ÔU,u ∼= R.

21In the classical situation this is effectively the deformation functor of the object x0. However we avoid using that terminology
in this abstract setting since “deformation functor” has a technical meaning.

22basically everything that arises in practice is a G-ring
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If M is moreover Deligne-Mumford, then if we choose R to be a universal deformation ring (8.0.5), then the
morphism U →M can be moveover chosen to be etale.

Proof. Everything but the final statement is just [Sta16] Tag 0DR0. For the last part, V be a etale cover of
M, and let v ∈ V be a point lying over x, so that κ(v)/k is a finite etale extension. We wish to show that
f : U ×M V → V is etale at (v, u). Since f is smooth, it suffices to show that it is (locally) quasi-finite at (v, u).
Let fv : Uv → Specκ(v) be the fiber of f above v, and let uv denote the point of Uv lying over u. By [Sta16]
Tag 01TH, it suffices to show that uv is closed in Uv and there does not exist a point ηv ∈ Uv which specializes
to uv. For the first part, uv is clearly closed in Uv because Uv → Specκ(v) is separated, and uv is a section.

For the second part, note that if ηv ∈ Uv specializes to uv, then its image η ∈ U must specialize to u. Thus, we
must show that any η ∈ U specializing to u does not lie in the fiber Uv. Suppose η ∈ U specializes to u ∈ U . Then,
since completions are faithfully flat, η lifts to a point in ÔU,u corresponding to some non-maximal prime ideal p
with residue field κ(η) = (ÔU,u)p/p, which is an Artinian local Λ-algebra. The map g : Specκ(η) → Spec ÔU,u
corresponds to an object in the deformation category FM,k,x over Specκ(η). Clearly g does not factor through
Specκ(v). Thus, since ÔU,u is universal, the object of FM,k,x corresponding to g is not isomorphic to the
pullback of some object ofM(Specκ(v)). By the definition of the 2-fiber product Uv, this means that there do
not exist any points of Uv lying over η.

Proposition 8.0.7. Let M be a smooth 1-dimensional Deligne-Mumford stack over C, and let c :M→ M be
the canonical map to its coarse moduli scheme M . Let x ∈ M be a geometric point with image x ∈ M . Let
OM,x be the etale local ring at x, and OM,x the etale local ring at x. By Lemma 8.0.6, ÔM,x can be identified
with the universal deformation ring of x. Let Gx := AutM(x), and let Kx ⊂ Gx the subgroup of automorphisms
which extend to the universal deformation of x over ÔM,x. Then the map cx : SpecOM,x → SpecOM,x is a
finite flat totally ramified extension of DVR’s with ramification index equal to the order of the group Gx/Kx.

Proof. LetM(x) :=M×M SpecOM,x. From the proof of Theorem 11.3.1 of [Ols16], we find that

M(x)
∼= [SpecOM,x/Gx]

and moreover the composition

SpecOM,x → [SpecOM,x/Gx]→ SpecOM,x

is finite. Since the map SpecOM,x → M is flat, the projection [SpecOM,x/Gx] → SpecOM,x identifes the
target with the coarse moduli scheme of [SpecOM,x/Gx] (Theorem 11.1.2 of the same book). Thus, we have
OM,x = (OM,x)Gx , and since OM,x is a DVR with residue characteristic 0, OM,x is also a DVR. In particular,
the map SpecOM,x → SpecOM,x is a finite map between regular schemes, and hence is flat. Since they are
also strictly henselian, the map is totally ramified. Let K be the kernel of the action of Gx on OM,x, then the
ramification index is |Gx/K|. We wish to show that K = Kx.

To see this, we use the fact that by 8.0.6, the completion ÔM,x is the universal deformation ring of the object x.
Thus, it represents the functor Fx, which to every Artinian local C-algebra A associates the set of isomorphism
classes:

Fx(A) = {(X/A,ϕ : X0
∼−→ x}/ ∼=

where X0 is the special fiber of X/A. One can check that the action of Gx on ÔM,x induces the following action
on the functor Fx:

g · (X/A,ϕ) := (X/A, g ◦ ϕ) g ∈ Gx
Thus, the kernel of the action consists precisely of g ∈ Gx which extend to every deformation of x. SinceM is
Deligne-Mumford, any such extension is unique, and hence K is equivalently the set of automorphisms which
extend to the universal deformation of x over ÔM,x, which is what we wanted to show.
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