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Abstract. We show that the configuration space of four unordered points in C is a torsor under the affine group
Aff := StabPGL2(C)(∞) over the universal punctured elliptic curve E◦ → M1,1. We use this to give a geometric
interpretation of an exceptional relationship, due to Dyer–Formanek–Grossman, between the four-stranded braid
group and the automorphism group of a rank 2 free group. We also show how this gives a new moduli interpretation
for this configuration space in terms of data associated to elliptic curves.

1. Introduction

Let Confn = Confn(C) denote the configuration space of n-tuples of distinct ordered points in C, and let Conf [n] =
Conf [4](C) denote the quotient under the free action of Sn, i.e. the space of configurations of n unordered distinct
points. An unordered configuration τ = {a, b, c, d} ∈ Conf [4](C) determines the smooth curve Eτ of genus 1 given
by the expression

(1) Y 2 = (X − a)(X − b)(X − c)(X − d).

However, since τ is unordered, there is no canonical way to endow Eτ with a basepoint and thus this does not yield
a map from Conf [4](C) to M1,1, the moduli space of elliptic curves, let alone a map to the universal punctured
elliptic curve E◦ over M1,1. The first goal of this note is to explain how to produce a map Conf [4](C) → E◦ which
is moreover a torsor for the affine group Aff := StabPGL2(C)(∞) ∼= C⋊ C∗.

To state the result, let V ⩽ S4 denote the subgroup of order 4 generated by the conjugacy class of (12)(34). Let
Y(2) denote the moduli stack classifying elliptic curves equipped with a trivialization of its 2-torsion, let E(2) denote
the pullback of E → M1,1 over Y(2), let E(2)◦ ⊂ E(2) be the complement of the zero section, and let E(2)∗ ⊂ E(2)◦
denote the complement of the 2-torsion. We will prove the following theorem:

Theorem A. There is a commutative diagram

(2)

Conf4(C) Conf4(C)/V Conf [4](C)

E(2)∗ E(2)◦ E◦

Y(2) M1,1

ξ ξ/V ξ/S4

[2] f

f

where

(a) Each rectangle is cartesian,

(b) each of ξ, ξ/V , and ξ/S4 is a torsor for the affine group Aff, and

(c) the maps labeled f are the forgetful maps.

Theorem A grew out of a desire to have an algebro-geometric interpretation of a result of Dyer–Formanek–Grossman
[DFG82], which was used in [CLT23] to produce infinitely many finite simple characteristic quotients of the free
group of rank 2. In [DFG82], they describe a subgroup F of the four-stranded braid group B4 = π1(Conf [4](C)) in
terms of the standard generators of B4 and verify by direct computation that it has the following properties:

(a) F is free of rank 2,

(b) F is normal in B4, and
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(c) the conjugation action of B4 on F yields an isomorphism

(3) B4/Z(B4) ∼= Aut+(F ),

and a short exact sequence

(4) 1 → F → B4/Z(B4) → Out+(F ) → 1;

here the + indicates that we take the index-2 subgroup of Out(F ) (or Aut(F )) for which the induced
automorphism on Z2 ∼= H1(F ;Z) has positive determinant.

Since the long-exact sequence of orbifold fundamental groups for the fibration E◦ → M1,1 identifies π1(E◦) with
Aut+(F ), where F is interpreted as the fundamental group of a fiber, it follows that:

Corollary B. The Dyer–Formanek–Grossman sequence (4) and the isomorphism (3) are induced by the long exact
sequence in (orbifold) homotopy groups for the Aff-torsor Conf [4](C) → E◦. Under this isomorphism, Out+(F ) ∼=
SL2(Z) is interpreted as πorb

1 (M1,1), and F is interpreted as π1(E
◦), the fundamental group of a fiber of E◦ → M1,1.

The map ξ : Conf4(C) → E(2)∗ in Theorem A can be described as follows. Recall that a map Conf4(C) → E(2)∗ is
equivalent to the data of a family of elliptic curves E over Conf4(C) equipped with a trivialization of its 2-torsion
and with an additional section which is not 2-torsion. The family E corresponding to ξ is none other than the one
described by the equation (1). As we will see in Lemma 3.4, this family is uniquely determined (up to isomorphism)
by the properties:

• Its 2-torsion E[2] is split (has trivial monodromy over Conf4(C)), and

• as a double cover of the trivial P1-bundle P1 × Conf4(C) → Conf4(C) given by (X,Y ) 7→ X, it is branched
above the sections given by a, b, c, d and is split above (the constant section) ∞.

A cubic equation for E is given in (10). The particular trivialization of E[2] used to define ξ is given by the preimages
of the sections a, b, c, d, where the preimage of d will be taken to be the zero. The non-2-torsion section will be taken
to be either of the two preimages above ∞ – different choices lead to (uniquely) isomorphic data, and hence the
same map to E(2)∗.1 Once we have defined ξ, it remains to show that it descends to give a map Conf [4](C) → E◦.
This proceeds in two steps. First, in §3.3, we show that the action of V ⩽ S4 descends to the translation action of
E(2)[2] on E(2)∗. It is here that we see how to associate an elliptic curve to an unordered configuration {a, b, c, d}.
Namely, we consider the quotient of the genus 1 curve Ea,b,c,d by its 2-torsion, where the quotient is taken relative to
any choice of a, b, c, d as the origin. This quotient is well-defined, and is itself a genus 1 curve isomorphic to Ea,b,c,d,
but is now equipped with a distinguished point given by the identity coset. In the diagram (2), this quotient is
expressed as the doubling map [2]. Finally, in §3.4, we show that the action of S4/V ∼= S3 descends to the natural
action of SL2(Z/2) on the set of trivializations of E(2)[2].

The rightmost column in the diagram of Theorem A realizes Conf [4](C) as an Aff-torsor over E◦; in particular,
the fibers over non-orbifold points are principal homogeneous spaces under Aff. Our final main result refines this,
showing how to interpret the fibers in terms of data associated to elliptic curves. To do so, we recall that the Hodge
bundle ΩM1,1 is the line bundle on M1,1 whose fiber over an elliptic curve E ∈ M1,1 is the space H0(E; Ω1

E) of
holomorphic differential 1-forms on E; its pullback over E◦ will be denoted ΩE◦. We let Ω◦E◦ denote the complement
of the zero section in the total space of ΩE◦. Since automorphisms of elliptic curves act freely on the space of nonzero
holomorphic differentials, Ω◦E◦ is an algebraic variety. The points of Ω◦E◦ correspond to isomorphism classes of
triples (E,Z, ω), where E is an elliptic curve, Z a nonzero point on E, and ω a nonzero holomorphic differential on
E.

Theorem C. There is an isomorphism of varieties

f : Conf [4](C)
∼−→ C× Ω◦E◦

given, on τ = {a, b, c, d} ∈ Conf [4](C), by

f(τ) =

(
cm(τ), (ξ/S4)(τ),

dX

Y

)
,

1Since we described E(2)∗ as a stack, it would be more correct to say that isomorphic data lead to isomorphic maps to E(2)∗. However,
since the data classified by E(2)∗ have no nontrivial automorphisms, E(2)∗ is representable (isomorphic to an algebraic variety), and
hence when viewed as an algebraic variety, maps to E(2)∗ are by definition isomorphism classes of maps to the moduli stack E(2)∗. This
abuse of terminology will be employed repeatedly in this note.
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where cm({a, b, c, d}) = 1
4 (a+ b+ c+ d) denotes the center of mass of the configuration τ , and dX

Y is the indicated
form on (the smooth compactification of) the curve Y 2 = (X − a)(X − b)(X − c)(X − d).

Theorem C thus gives a novel moduli interpretation of Conf [4](C) in terms of elliptic curves and associated data.

Context. The relationship between square-free polynomials and (hyper)elliptic curves is a classical topic in algebraic
geometry. The connection between cubic polynomials and elliptic curves, by way of the Weierstrass form, is widely
known. One of the underlying aims of this note is to further elucidate the situation for polynomials of degree n = 4.

Via Birman–Hilden’s theory of the hyperelliptic mapping class group (cf. [BH71] or [FM12, Section 9.4.1]), one
can obtain a topological description of Dyer–Formanek–Grossman’s group F as follows. Birman-Hilden theory
gives an isomorphism B4/Z(B4) ∼= PMod(Σ1,2), where PMod(Σ1,2) denotes the mapping class group of a surface
Σ1,2 of genus 1 with 2 individually-distinguishable marked points. The group F then arises as the “point-pushing
subgroup”, i.e. the kernel of the forgetful map PMod(Σ1,2) → Mod(Σ1,1). This latter group is well-known to be
SL2(Z) ∼= Out+(F2). The results of this article can be viewed as giving a “physical realization” of this story in terms
of maps between moduli stacks.

2. Configuration spaces and the cross ratio

In this short section, we recall some properties of the cross ratio that underlie our constructions.

For a space X and an integer n ≥ 1, let Confn(X) denote the subspace of Xn corresponding to tuples of n distinct
points. The natural right action of the symmetric group Sn on Confn(x) by permuting coordinates is free. Explicitly,
for x = (x1, . . . , xn) ∈ Confn(X) and σ ∈ Sn, define xσ by (xσ)i = xσ(i).2 Let Conf [n](X) denote the quotient
Confn(X)/Sn. If X = C, we simply write Confn := Confn(C) and Conf [n] := Conf [n](C).

When n = 4, we denote by V the subgroup of S4 generated by involutions without fixed points. Explicitly,

V = {( ), (12)(34), (13)(24), (14)(23)} ∼= Z/2× Z/2.

Let P1 denote the Riemann sphere, and define

(5) P∗ := P1 − {0, 1,∞}.

Recall that SL2(C) acts on P1 by the rule
[
a b
c d

]
z := az+b

cz+d . The subgroup of scalar matrices {±I} acts trivially, and
the induced action of PSL2(C) := SL2(C)/± I is sharply 3-transitive; this means that it acts freely and transitively
on Conf3(P1). For x = (x1, x2, x3, x4) ∈ Conf4(P1), define the cross ratio map χ by

χ : Conf4(P1) −→ P1

x 7→ (x1 − x3)(x2 − x4)

(x1 − x2)(x3 − x4)

Proposition 2.1. The cross ratio χ satisfies the following properties.

(a) It’s image is P∗ := P1 − {0, 1,∞}.

(b) It is invariant under the diagonal action of PSL2(C) on Conf4(P1) as well as the action of V .

(c) Two tuples x, x′ ∈ Conf4(P1) lie in the same PSL2(C)-orbit if and only if their cross ratios agree. In
particular, χ is a PSL2(C)-torsor, and the action of V can be induced by elements of PSL2(C).

(d) χ(0, 1, λ,∞) = λ

Proof. Items (a)-(c) are well-known (cf. [Con78, Definition 3.7 ff.]), and (d) follows by a straightforward calculation.
□

2Our convention for multiplication in Sn is to treat permutations as functions. Thus it acts on the left on the set {1, 2, . . . , n}. For
example, we have (12)(23) = (123).
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3. Proof of Theorem A

3.1. Moduli of elliptic curves with level 2 structure. Recall that an elliptic curve is a compact Riemann
surface E of genus 1, equipped with a marked point O ∈ E, which will play the role of the zero for its group
law. Algebro-geometrically, for any scheme T , an elliptic curve over T is a proper, smooth, and finitely presented
morphism f : E → T with geometrically connected fibers of genus 1, equipped with a zero section O : T → E. In
this context, one should think of E/T as a family of elliptic curves over T .

An elliptic curve E admits a unique involution [−1]. The quotient E/[±1] is isomorphic to the Riemann sphere P1,
and the quotient map E → E/[±1] is a double cover ramified at exactly the 2-torsion points E[2] ⊂ E. Conversely, by
the classification of covering spaces, for any subset B ⊂ P1 of cardinality 4, there exists a unique (up to isomorphism)
double cover EB of P1 with branch locus B. The Hurwitz formula implies that EB has genus 1. If B is equipped
with an ordering, for example, if B is the underlying set of τ = (a, b, c, d) for some τ ∈ Conf4(P1), then we will by
default view Eτ as an elliptic curve whose origin is the unique preimage of d. In this case Eτ is also equipped with
an ordering of its points of order 2, as well as the data of a degree 2 map to P1. An explicit (affine) model for Eτ

is given by
Eτ : Y 2 = (X − a)(X − b)(X − c)(X − d).

In this model, the involution [−1] is given by (X,Y ) 7→ (X,−Y ), and the double covering map to P1 is given by
(X,Y ) 7→ X.

Let Y(2) be the moduli stack classifying quadruples (E,P,Q,R), where E is an elliptic curve, and P,Q,R is a
labelling of the 2-torsion points of E. There are exactly three points of order 2, so P,Q,R can be viewed as an
ordering of these points. Such an ordering is called a level-2 structure on E, and we call the quadruple (E,P,Q,R)
an enhanced elliptic curve. We note that the automorphism group of any enhanced elliptic curve is the group
generated by [−1], which we simply denote by [±1]. For τ ∈ Conf4, let Pτ , Qτ , Rτ ∈ Eτ denote the preimages of
a, b, c respectively. To such a configuration τ , we associate the enhanced elliptic curve (Eτ , Pτ , Qτ , Rτ ).

For an object (E,P,Q,R) ∈ Y(2), choose an isomorphism E/[±1] ∼= P1, and let a, b, c, d denote the images of
P,Q,R,O in P1 under this isomorphism. Different isomorphisms will result in different quadruples, but their cross
ratio remains invariant, and hence we obtain a map

c : Y(2) −→ P∗

(E,P,Q,R) 7→ χ(a, b, c, d)

This map is a homeomorphism, and identifies P∗ with the coarse scheme of Y(2). The map c can be thought of as
having degree 1

2 . It is sometimes referred to as the modular λ-invariant.

Remark 3.1. One can equivalently define Y(2) as the moduli stack classifying triples (E,P,Q) where P,Q is a basis
for E[2]. Since E[2] is a group scheme, the existence of sections P,Q of order 2 implies that E[2] is totally split,
and hence given P,Q, we can simply declare R to be the remaining section of order 2. Note that the natural action
of SL2(Z/2) on the set of bases is isomorphic to the action of the symmetric group S3 on the set of orderings of
E[2]− {O}.

3.2. Mapping Conf4 to E(2)∗. The moduli stack Y(2) admits a universal elliptic curve f : E(2) → Y(2). This
E(2) is the moduli stack classifying quintuples (E,P,Q,R,Z), where (E,P,Q,R) is an enhanced elliptic curve,
and Z ∈ E. Two such quintuples are isomorphic if there is an isomorphism of the elliptic curves respecting each
of the extra points P,Q,R,Z. The map f is defined by forgetting the point Z. The automorphism group of an
object (E,P,Q,R,Z) ∈ E(2) consists of the automorphisms of E which fixes each of P,Q,R,Z. Since the only
automorphism of elliptic curves fixing its 2-torsion is [±1], the only orbifold points of E(2) are the 2-torsion points;
i.e., the points corresponding to (E,P,Q,R,Z) where Z ∈ E[2]. Let E(2)∗ denote the open complement of its
2-torsion points; this is the substack of E(2) consisting of quintuples as above where moreover Z is disjoint from any
2-torsion section. Its objects have no automorphisms, and hence it is an algebraic variety. In this section we define
an Aff-torsor

ξ : Conf4 → E(2)∗

Let M0,n
∼= Confn(P1)/PGL2(C) denote the moduli stack of smooth projective curves of genus 0 with n disjoint

sections. Since the action of PGL2 is sharply 3-transitive on P1, M0,3 is a point, and M0,n is an algebraic variety
for n ≥ 3. For n = 4, up to the action of PGL2, we can assume that an object of M0,4 is given by P1 with the
first three sections given by 0, 1,∞. The fourth section must be disjoint from these three, and hence M0,4

∼= P∗.
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An explicit isomorphism is given by the cross ratio χ : M0,4 → P∗. For n = 5, forgetting the fifth section maps the
moduli stack M0,5 onto M0,4 with fibers 4-punctured P1’s.

There is a natural map Ψ : E(2)∗ → M0,5 obtained by sending a quintuple (E,P,Q,R,Z) to the genus 0 curve
E/[±1], marked by the images of P,Q,R,O,Z, where O ∈ E is the identity. Recall that E(2)∗ maps to P∗ via
E(2)∗ → Y(2)

c→ P∗, where c is the modular lambda invariant.

Theorem 3.2. The map Ψ : E(2)∗ → M0,5 described above is an isomorphism of schemes over P∗.

Remark 3.3. Since the fibers of M0,5 → M0,4
∼= P∗ are 4-punctured P1’s, this means that the family of punctured

elliptic curves E(2)∗ over Y(2) “physically” looks like a family of punctured P1’s. What’s happening is that the points
of E(2)∗ are in bijection with isomorphism classes of quintuples, and (E,P,Q,R,Z) is isomorphic to (E,P,Q,R,−Z),
even though Z ̸= −Z as points on E. Seen another way, whereas the fibers of the map E(2)∗ → Y(2) are elliptic
curves, it is the fibers of E(2)∗ → Y(2)

c→ P∗ that are P1’s. Recall that c should be thought of as having degree 1
2 .

To prove Theorem 3.2, we will need the following lemma:

Lemma 3.4. Let T be a connected scheme, and let σ1, . . . , σ5 be disjoint sections of P1
T → T . Then up to isomor-

phism, there is a unique smooth projective curve E/T of genus 1 which is a double cover of P1
T only branched over

σ1, . . . , σ4 and is split above σ5.

We will typically give E/T the structure of an elliptic curve whose zero section is σ4. The sections σ1, σ2, σ3 then
define a level-2 structure on E/T .

Proof. Fix a base (geometric) point t ∈ T , and let P1
t be the fiber of P1

T over t. Let B be the union of the images of the
sections σ1, . . . , σ4 ⊂ P1

T , and let Bt := B∩P1
t . We have a split exact sequence of fundamental groups [GR71, §XIII,

Prop 4.3]

(6) 1 π1(P1
t −Bt, σ5(t)) π1(P1

T −B, σ5(t)) π1(T, t) 1

(σ5)∗

Let γ1, . . . , γ4 be “meridional” generators of π1(P1
t−Bt, σ5(t)) winding around the points σ1(t), . . . , σ4(t) respectively.

The double cover of P1
t branched only above Bt corresponds to a homomorphism φ : π1(P1

t−Bt, σ5(t)) → Z/2 sending
γ1, . . . , γ4 each to 1. To prove the lemma, it suffices to show that φ admits a unique extension to a homomorphism
φ̃ : π1(P1

T −B, σ5(t)) −→ Z/2 which is zero on the image of π1(T, t).

Since (6) is split, the 5-term exact sequence for (6) degenerates into an isomorphism

H1(P1
T −B;Z/2) ∼= H1(T ;Z/2)×H1(P1

t −Bt;Z/2)π1(T,t).

Since B is a union of four distinct sections, the monodromy action of π1(T, t) on H1(P1
t −Bt;Z/2) is trivial. Thus

the desired φ̃ corresponds to the element (0, φ) ∈ H1(P1
T −B;Z/2). □

Remark 3.5. The condition that the elliptic curve E/T is split above σ5 is crucial to the uniqueness. It follows from
the proof that there is a bijection between homomorphisms φ : π1(T, t) → Z/2 and isomorphism classes of elliptic
curves Eφ/T branched over exactly the sections σ1, . . . , σ4. The curves Eφ for nontrivial φ ̸= 0 are quadratic twists
of E0.

Proof of Theorem 3.2. The Riemann-Hurwitz formula implies that E/T has genus 1. It is easy to check that Ψ
commutes with the maps to P∗. It remains to show that Ψ is an equivalence of categories. For any isomorphism
of elliptic curves α : E

∼−→ E′, the only other isomorphism which descends to the same map E/[±1]
∼−→ E/[±1] is

[−1] ◦ α. Since the only fixed points of [−1] are 2-torsion points and since Z is not 2-torsion, only one of α, [−1] ◦ α
will respect the section Z. This shows that Ψ is faithful.

Next, the existence part of Lemma 3.4 shows that the Ψ is essentially surjective. Finally, if (E, . . .), (E′, . . .) are
objects of E(2)∗, and β : Ψ(E, . . .) → Ψ(E′, . . .) is an isomorphism, then the uniqueness part of Lemma 3.4 implies
that there must exist an isomorphism α : (E, . . .) ∼= (E′, . . .) lifting β. This shows that Ψ is full, and hence completes
the proof. □
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There is a natural map j : Conf4 → M0,5 sending (a, b, c, d) to the PGL2(C)-orbit of (a, b, c, d,∞). This is visibly
a torsor under the affine group Aff := StabPSL2(C)(∞) ∼= C⋊C×. Composing with the isomorphism Ψ−1 above, we
have a map

(7) ξ : Conf4
j−→ M0,5

Ψ−1

−→ E(2)∗

The pointed enhanced elliptic curve over Conf4 corresponding to ξ can be described as follows. Let P := Conf4 ×P1

be the trivial P1-bundle over Conf4. Then by Lemma 3.4, there is up to isomorphism a unique elliptic double cover
E → P ramified above a, b, c, d and split over ∞. We give E the structure of an elliptic curve by taking the unique
section OE : Conf4 → E above d to be the zero for the group law. Let PE, QE, RE : Conf4 → E denote the unique
sections above a, b, c respectively; this defines a level 2 structure on E. Finally, we once and for all choose a section
ZE : Conf4 → E above ∞. Then the map ξ : Conf4 → E(2)∗ corresponds to the object

(8) (E, PE, QE, RE, ZE) ∈ E(2)∗

We note that the other section above ∞ is −ZE; replacing ZE with −ZE leads to the same (strictly speaking,
isomorphic) map ξ : Conf4 → E(2)∗. An explicit affine equation for E is simply:

(9) E : Y 2 = (X − a)(X − b)(X − c)(X − d)

This equation visibly has the desired branching behavior above P. It follows from standard calculations (see,
e.g., [Sil09, §II.2]), that the smooth compactification of (9) is split above ∞ ⊂ P. Thus, by the uniqueness part of
Lemma 3.4, (9) is indeed an equation for E.

Remark 3.6. A cubic equation for E can be given as follows. For (a, b, c, d) ∈ Conf4 with cross ratio λ = χ(a, b, c, d),
there is a unique Möbius transformation γabcd sending (0, 1, λ,∞, d−b

a−b ) 7→ (a, b, c, d,∞). Explicitly, γabcd is given by

γabcd(z) =
dz + a b−d

a−b

z + b−d
a−b

For (a, b, c, d) ∈ Conf4 with cross ratio χ, define the quantity

µ = µ(a, b, c, d) :=

(
d− b

a− b

)(
d− b

a− b
− 1

)(
d− b

a− b
− χ

)
We note that µ never vanishes for (a, b, c, d) ∈ Conf4. Let γ be the automorphism of P defined by γabcd. Then
pulling E → P back by γ yields an elliptic curve branched over 0, 1, χ,∞ and split above d−b

a−b . The pullback γ∗E
admits an equation

(10) γ∗E : Y 2 = µX(X − 1)(X − χ)

Indeed, the elliptic curve defined by this equation is branched above 0, 1, χ,∞ and is split above d−b
a−b , so Lemma

3.4 implies that(10) is a valid equation for γ∗E. In this model, the level 2 structure is given by the sections above
0, 1, χ, and the section γ∗ZE is here given by

(a, b, c, d) 7→
(
d− b

a− b
, µ

)
3.3. Descending to a map Conf4 /V → E(2)◦. Recall that since the action of S4 commutes with the diagonal
action of Aff, the action of S4 on Conf4 induces an action on E(2)∗ ∼= M0,5. The goal of this subsection and the
next is to study how this action descends. This amounts to understanding the relationship between the object
(E, PE, QE, RE, ZE) and its pullback by elements of S4.

We begin with the action of V ⊂ S4 on Conf4. We examine the action of σ = (12)(34) ∈ V , the rest being similar.

A configuration τ = (a, b, c, d) ∈ Conf4 is mapped to the object ((Eτ , Oτ ), Pτ , Qτ , Rτ , Zτ ), where we recall Oτ

is the point above d, playing the role of zero, Pτ , Qτ , Rτ are the points above a, b, c respectively, and Zτ is a
point above ∞, determined by our choice of ZE in the previous section. It follows that (b, a, d, c) is mapped to
((Eτ , Rτ ), Qτ , Pτ , Oτ , Zτ ), which is (uniquely) isomorphic, via the translation [+Rτ ], to ((Eτ , Oτ ), Pτ , Qτ , Rτ , Zτ +
Rτ ). The story for other elements of V being similar, we find that:

Proposition 3.7. The action of V on Conf4 descends to the action of E(2)[2] on E(2)∗ by translation.
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It follows that we have a map Conf4 /V → E(2)∗/E(2)[2]. The latter quotient can be replaced by the image of E(2)∗
under the (fiberwise) doubling map [2] : E(2) → E(2). This image is the complement of the zero section in E(2),
denoted E(2)◦ := E(2)−O. Thus we have a diagram

(11)
Conf4 Conf4 /V

E(2)∗ E(2)◦
ξ ξ/V

[2]

Proposition 3.8. The diagram (11) is cartesian, and both vertical maps are Aff-torsors.

Proof. There is a canonical map Conf4 → E(2)∗ ×E(2)◦ (Conf4 /V ) of coverings of Conf4 /V . Since both covers are
connected and of degree 4, this map is an isomorphism, and hence the diagram is cartesian. Since the actions of
Aff and V on Conf4 commute, the Aff-action on ξ descends to one on ξ/V . Since the property of being a torsor is
local on the base and [2]∗(ξ/V ) = ξ is a torsor, ξ/V is one as well. □

3.4. Descending to a map Conf [4] → E◦. Let E be the universal elliptic curve over M1,1, and let E◦ := E −O be
the complement of the zero section. We have a cartesian diagram

E(2)◦ E◦

Y(2) M1,1

f

f

where the horizontal arrows labelled f are given by forgetting the level-2 structure. In particular, E◦ is the moduli
stack of pairs (E,Z), where E is an elliptic curve and Z is a section disjoint from the zero section. The composition

h : Conf4
ξ−→ E(2)∗ [2]−→ E(2)◦ f−→ E◦

corresponds to the pair (E, [2]ZE), and for σ ∈ S4, the composite h ◦ σ corresponds to the pair (σ∗E, σ∗[2]ZE).

We wish to show that the map h descends to a map Conf4 /S4 −→ E◦. This amounts to showing that for every
σ ∈ S4, there is an isomorphism φσ : σ∗(E, [2]ZE)

∼−→ (E, [2]ZE) that satisfies the cocycle condition:

φσ◦σ′ = φσ ◦ φσ′ for all σ, σ′ ∈ S4.

We will do this by showing that the isomorphism φσ is unique, and therefore automatically satisfies the cocycle
condition. This is the content of the following lemma.

Lemma 3.9. For any σ ∈ S4, there is a unique isomorphism E
∼−→ E lifting σ : Conf4 → Conf4 which preserves

the section [2]ZE.

Proof. We note that since [2]ZE is not generically 2-torsion, if an isomorphism exists, then it is unique. It follows
from our results in §3.3 that such an isomorphism exists for σ ∈ V . Thus it suffices to show that such an isomorphism
exists for representatives of the quotient group S4/V . We will consider those σ ∈ S4 which fixes the 4th element.

Viewing σ as an automorphism of Conf4, it lifts to an automorphism σ̃ of P given by (τ, z) 7→ (τσ, z). This lift
σ̃ permutes the sections a, b, c : Conf4 → P, and fixes the section d as well as the constant section ∞. Thus, by
Lemma 3.4, σ̃ lifts to an isomorphism E → E. There are two such lifts, which are distinguished by their action on
the sections lying over ∞ ⊂ P. There is thus a unique isomorphism ˜̃σ : E → E which fixes ZE. Since σ̃ fixes d, ˜̃σ is
an isomorphism of elliptic curves (recall that the zero OE was chosen to be the section above d). It follows that ˜̃σ
also preserves [2]ZE. □

Theorem 3.10. The map f ◦ ξ/V : Conf4 /V → E◦ factors through Conf [4]. Thus, we have a diagram

(12)

Conf4 Conf4 /V Conf [4]

E(2)∗ E(2)◦ E◦

ξ ξ/V ξ/S4

[2] f
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Moreover, all squares are cartesian, and all vertical maps are Aff-torsors.

Proof. Lemma 3.9 implies that f◦ [2]◦ξ factors through Conf [4]. The properties of the diagram follow from the same
arguments as used in the proof of Proposition 3.8, noting that Conf4 /V → Conf [4] and E(2)◦ → E◦ are connected
coverings of the same degree (namely, 6). □

This completes the proof of Theorem A.

4. Proof of Theorem C

Recall the setup: we have the space Ω◦E◦, the complement of the zero section in the Hodge bundle over E◦, and we
consider the map

f : Conf [4] → C× Ω◦E◦

τ 7→
(
cm(τ), (ξ/S4)(τ),

dX

Y

)
.

Our goal is to show that this is an isomorphism. We first address a preliminary matter.

Lemma 4.1. Let τ = {a, b, c, d} ∈ Conf [4] be given. The differential dX
Y on

Uτ = V (Y 2 − (X − a)(X − b)(X − c)(X − d)) ⊂ C2

extends to a nonzero holomorphic form on the smooth compactification Eτ of Uτ .

Proof. The theory of the Poincaré residue map (see, e.g. [GH94, p. 147]) implies that the restriction to Uτ of dX
Y

as a meromorphic 1-form on C2 is holomorphic and nowhere vanishing. It therefore extends to a differential ω
on the smooth compactification Eτ with poles only possibly at the two added points ±∞. However, ω lies in the
−1-eigenspace under the elliptic involution ι, and ±∞ are exchanged by ι, showing that the coefficients of the divisor
of ω at ±∞ are equal. Since deg div(ω) = 0 and div(ω) is supported on ±∞, it follows that div(ω) = 0 as was to
be shown. □

Proof of Theorem C. The first step will be to lift to the setting of ordered configurations. Recall from Section 3.2
that the space E(2)∗ denotes the space of quintuples (E,P,Q,R,Z), where E is an elliptic curve, P,Q,R ∈ E[2] is
a level-2 structure on E, and Z ∈ E \ E[2] is an additional point. Let us denote a general such quintuple as E+.
Similarly, for τ ∈ Conf4, let E+

τ := (Eτ , Pτ , Qτ , Rτ , Zτ ), where Pτ , Qτ , Rτ are as in §3.1 and Zτ is determined by
our choice of ZE in §3.2. Recall that Ω◦E(2)∗ denotes the complement of the zero section in the total space of the
Hodge bundle over E(2)∗. Let f̃ be the map

f̃ : Conf4 −→ C× Ω◦E(2)∗

τ 7→
(
cm(τ), E+

τ , dX
Y

)
.

Thus we have a diagram

Conf4 C× Ω◦E(2)∗ E(2)∗

Conf [4] C× Ω◦E◦ E◦.

f̃

f

Note that Theorem A implies that the outer square is cartesian. Since the right square is cartesian, so is the left
square. Moreover, the vertical maps are S4-covers.

Theorem A shows that ξ : Conf4 −→ E(2)∗ is an Aff-torsor. We will show that C × Ω◦E(2)∗ → E(2)∗ is also an
Aff-torsor, and that f̃ is a map of Aff-torsors, hence an isomorphism.

For E+ ∈ E(2)∗ and A ∈ Aff given by A : z 7→ αz + β define

A · (c, E+, ω) = (Ac,E+, α−1ω)

This visibly makes C×Ω◦E(2)∗ into an Aff-torsor over E(2)∗. To show that f̃ is Aff-equivariant, we must show that
(E+

ατ+β ,
dX
Y ) is isomorphic to (E+

τ , α−1 dX
Y ).
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By construction, τ ∈ Conf4 is assigned to the differential dX
Y on Eτ , and ατ +β is assigned to dX

Y on the isomorphic
curve Eατ+β . There is a unique isomorphism g : Eτ → Eατ+β taking E+

τ ∈ E(2)∗ to E+
ατ+β ; we will see that

g∗
(
dX
Y

)
= 1

α
dX
Y . This reduces to a local calculation. One verifies that g : Eτ → Eατ+β is given on the affine part

by
g(X,Y ) = (αX + β, α2Y ).

Thus
g∗

(
dX

Y

)
=

αdX

α2Y
=

1

α

dX

Y
.

Thus f̃ is an isomorphism of Aff-torsors. Taking quotients by the symmetric group S4 shows that f is an isomorphism
as desired. □
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